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Preface to Second Edition

The field of quantum optics today is very different form the field that Dan Walls
and I surveyed in 1994 for the first Edition of this book. Some of the new fields
that have emerged over the years were hinted at in the earlier edition: quantum
information has at least some roots in the study of Bell’s Inequalities, while the fields
of ion trapping and quantum condensed gases have their roots in the old chapter on
light forces. However such is the growth of activity in each of these areas that I
have found it necessary to write four new chapters for this edition. In order to keep
the book to a reasonable size this has meant cutting some of the material from the
first edition. The old chapter on Intracavity Atomic Systems is largely gone with
parts distributed in the new chapter on Cavity QED and elsewhere. Likewise the old
chapter on Resonance Fluorescence has been redistributed across Chaps. 10 and 11
in this edition. No doubt more cutting could have been made but I have tried to keep
some continuity with the previous edition. In any case an emphasis on experimental
realisations has been retained in the new material. Preparing this edition was not as
much fun as the first. With Dan Walls untimely death in 1999, I have been denied
the consolations of a shared task and soldiered on alone (although I must admit to
hearing his voice from time to time as I cut and pasted). I can only hope that I have
not lost his vision for the book in my unchallenged role of sole author.

Brisbane, Australia, G.J. Milburn
October 2007.
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Chapter 1
Introduction

The first indication of the quantum nature of light came in 1900 when Planck dis-
covered he could account for the spectral distribution of thermal light by postulating
that the energy of a simple harmonic oscillator was quantized. Further evidence was
added by Einstein who showed in 1905 that the photoelectric effect could be ex-
plained by the hypothesis that the energy of a light beam was distributed in discrete
packets later known as photons.

Einstein also contributed to the understanding of the absorption and emission
of light from atoms with his development of a phenomenological theory in 1917.
This theory was later shown to be a natural consequence of the quantum theory of
electromagnetic radiation.

Despite this early connection with the quantum theory, physical optics developed
more or less independently of quantum theory. The vast majority of physical-optics
experiments can be adequately explained using classical theory of electromagnetism
based on Maxwell’s equations. An early attempt to find quantum effects in an op-
tical interference experiment by G.I. Taylor in 1909 gave a negative result. Tay-
lor’s experiment was an attempt to repeat Young’s famous two slit experiment with
one photon incident on the slits. The classical explanation based in the interfer-
ence of electric field amplitudes and the quantum explanation based on the inter-
ference of probability amplitudes both correctly explain the phenomenon in this
experiment. Interference experiments of Young’s type do not distinguish between
the predictions of the classical theory and the quantum theory. It is only in higher
order interference experiments, involving the interference of intensities, that differ-
ences between the predictions of classical and quantum theory appear. In such an
experiment the probability amplitudes to detect a photon from two different fields
interfere on a detector. Whereas classical theory treats the interference of intensi-
ties, in quantum theory the interference is still at the level of probability amplitudes.
This is one of the most important differences between the classical and the quantum
theory.

The first experiment in intensity interferometry was the famous experiment of
R. Hanbury Brown and R.Q. Twiss. This experiment studied the correlation in the
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photocurrent fluctuations fro two detectors. Later experiments were based on photon
counting, and the correlation between photon number was studied.

The Hanbury–Brown and Twiss experiment observed an enhancement in the two-
time correlation function of short time delays for a thermal light source, known as
photon bunching. This was a consequence of the large intensity fluctuations in the
thermal source. Such photon bunching phenomenon may be adequately explained
using a classical theory with a fluctuating electric field amplitude. For a perfectly
amplitude stabilized light field, such as an ideal laser operating well above thresh-
old, there is no photon bunching. A photon counting experiment where the number
of photons arriving in an interval of time T are counted, shows that there is still
randomness in the arrival time of the photons. The photon number distribution for
an ideal laser is Poissonian. For thermal light a super-Poissonian photocount distri-
bution results.

While the these results may be derived form a classical and quantum theory,
the quantum theory makes additional unique predictions. This was first elucidated
by R.J. Glauber in his quantum formulation of optical coherence theory in 1963.
Glauber was jointly awarded the 2005 Nobel Prize in physics for this work. One
such prediction is photon anti bunching, in which the initial slope of the two-time
photon correlation function is positive. This corresponds to an enhancement, on
average, of the temporal separation between photo counts at a detector, or photon
anti-bunching. The photo-count statistics may also be sub-Poissonian. A classical
theory of fluctuating field amplitudes would require negative probability in order
to give anti-bunching. In the quantum picture it is easy to visualize photon arrivals
more regular than Poissonian.

It was not until 1975 that H.J. Carmichel and D.F. Walls predicted that light
generated in resonance fluorescence fro a two-level atom would exhibit photon anti-
bunching that a physically accessible system exhibiting non-classical behaviour was
identified. Photon anti-bunching in this system was observed the following year by
H.J. Kimble, M. Dagenais and L. Mandel. This was the first non classical effect
observed in optics and ushered in a new era of quantum optics.

The experiments of Kimble et al. used an atomic beam and hence the photon
anti-bunching was convoluted with the atomic number fluctuations in the beam.
With the development of ion trap technology it is now possible to trap a single ion
for many minute and observe fluorescence. H. Walther and co workers in Munich
have studied resonance fluorescence from a single ion in a trap and observed both
photon bunching and anti-bunching.

In the 1960s improvements in photon counting techniques proceeded in tandem
with the development of new laser light sources. Light from incoherent (thermal)
and coherent (laser) sources could now be distinguished by their photon count-
ing statistics. The groups of F.T. Arecchi in Milan, L. Mandel in Rochester and
R. Pike in Malvern measured the photo count statistics of the laser. These exper-
iments showed that the photo-count statistics went from super-Poissonian below
threshold to Poissonian far above threshold. Concurrently the quantum theory of
the laser was being developed by H. Haken in Stuttgart, M.O. Scully and W. Lamb
in Yale and M. Lax and W.H. Louisell in New Jersey. In these theories both the
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atomic variables and the electromagnetic field were quantized. The results of these
calculations were that the laser functioned as an essentially classical device. In fact
H. Risken showed that it could be modeled as a van der Pol Oscillator.

In the late 80s the role of noise in the laser pumping process was shown to ob-
scure the quantum aspects of the laser. If the noise in the pump can be suppressed
the laser may exhibit sub-Poissonian statistics. In other words the intensity fluctu-
ations may be reduced below the shot noise level of normal lasers. Y. Yamamoto
first in Tokyo and then Stanford has pioneered experimental developments of semi-
conductor lasers with suppressed pump noise. More recently, Yamamoto and others
have pioneered the development of the single photon source. This is a source of
transform-limited pulsed light with one and only one photon per pulse: the ultimate
limit of an anti-bunched source. The average field amplitude of such a source is
zero while the intensity is definite. Such sources are highly non classical and have
applications in quantum communication and computation.

It took another nine years after the first observation of photon anti-bunching for
another prediction of the quantum theory of light to be observed – squeezing of
quantum fluctuations. The electric field of a nearly monochromatic plane wave may
be decomposed into two quadrature component amplitudes of an oscillatory sine
term and a cosine term. In a coherent state, the closest quantum counter-part to
a classical field, the fluctuations in the two quadrature amplitudes are equal and
saturate the lower bound in the Heisenberg uncertainty relation. The quantum fluc-
tuations in a coherent state are equal to the zero point fluctuations of the vacuum
and are randomly distributed in phase. In a squeezed state the fluctuations are phase
dependent. One quadrature phase amplitude may have reduced fluctuations com-
pared to the vacuum while, in consequence, the other quadrature phase amplitude
will have increased fluctuations, with the product of the uncertainties still saturating
the lower bound in the Heisenberg uncertainty relation.

The first observation of squeezed light was made by R.E. Slusher in 1985 at
AT&T Bell Laboratories in four wave mixing. Shortly after squeezing was demon-
strated using optical parametric oscillators, by H.J. Kimble and four wave mixing
in optical fibres by M.D. Levenson. Since then, greater and greater degrees of quan-
tum noise suppression have been demonstrated, currently more than 7 dB, driven
by new applications in quantum communication protocols such as teleportation and
continuous variable quantum key distribution.

In the nonlinear process of parametric down conversion, a high frequency photon
is absorbed and two photons are simultaneously produced with lower frequencies.
The two photons produced are correlated in frequency, momentum and possibly
polarisation. This results in very strong intensity correlations in the down converted
beams that results in strongly suppressed intensity difference fluctuations as demon-
strated by E. Giacobino in Paris and P. Kumar in Evanston.

Early uses of such correlated twin beams included accurate absorption measure-
ments in which the sample was placed in one arm with the other beam providing
a reference. when the twin beams are detected and the photo currents are sub-
tracted, the presence of very weak absorption can be seen because of the small quan-
tum noise in the difference current. More recently the strong intensity correlations
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have been used to provide an accurate calibration of photon detector efficiency by
A. Migdall at NIST and also in so called quantum imaging in which an object paced
in one path changes the spatial pattern of intensity correlations between the two
twin beams.

The high degree of correlation between the down converted photons enables
some of the most stringent demonstrations of the violation of the Bell inequalities
in quantum physics. In 1999 P. Kwiat obtained a violation by more than 240 stan-
dard deviations using polarisation correlated photons produced by type II parametric
down conversion. The quadrature phase amplitudes in the twin beams generated in
down conversion carry quantum correlations of the Einstein-Podolsky-Rosen type.
This enabled the continuous variable version of quantum teleportation, proposed by
L. Vaidmann, to be demonstrated by H.J. Kimble in 1998. More recently P.K. Lam,
using the same quadrature phase correlations, demonstrated a continuous variable
quantum key distributions.

These last examples lie at the intersection of quantum optics with the new field
of quantum information. Quantum entanglement enables new communication and
computational tasks to be performed that are either difficult or impossible in a classi-
cal world. Quantum optics provides an ideal test bed for experimental investigations
in quantum information, and such investigations now form a large part of the exper-
imental agenda in the field.

Quantum optics first entered the business of quantum information processing
with the proposal of Cirac and Zoller in 1995 to use ion trap technology. Fol-
lowing pioneering work by Dehmelt and others using ion traps for high resolu-
tion spectroscopy, by the early 1990s it was possible to trap and cool a single ion
to almost the ground state of its vibrational motion. Cirac and Zoller proposed a
scheme, using multiple trapped ions, by which quantum information stored in the
internal electronic state of each ion could be processed using an external laser to
correlate the internal states of different ions using collective vibrational degrees of
freedom. Ion traps currently provide the most promising approach to quantum in-
formation processing with more than eight qubits having been entangled in the labs
of D. Wineland at NIST in Colorado and R. Blatt in Innsbruck.

Quantum computation requires the ability to strongly entangle independent de-
grees of freedom that are used to encode information, known as qubits. It was ini-
tially thought however that the very weak optical nonlinearities typically found in
quantum optics would not be powerful enough to implement such entangling opera-
tions. This changed in 2001 when E. Knill, R. Laflamme and G.J. Milburn, followed
shortly thereafter by T. Pittman and J. Franson, proposed a way to perform condi-
tional entangling operations using information encoded on single photons, and pho-
ton counting measurements. Early experimental demonstrations of simple quantum
gates soon followed.

At about the same time another measurement based protocol for quantum com-
puting was devised by R. Raussendorf and H. Breigel. Nielsen showed how this ap-
proach could be combined with the single photon methods introduced by Knill et al.,
to dramatically simplify the implementation of conditional gates. The power of this
approach was recently demonstrated by A. Zeilinger’s group in Vienna. Scaling up
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this approach to more and more qubits is a major activity of experimental quantum
optics.

These schemes provide a powerful incentive to develop a totally new kind of light
source: the single photon pulsed source. This is a pulsed light source that produces
one and only one photon per pulse. Such sources are in development in many labo-
ratories around the world. A variety of approaches are being pursued. Sources based
on excitons in semiconductor quantum dots are being developed by A. Imamoglu
in Zurich, A. Shields in Toshiba Cambridge, and Y. Yamamoto and J. Vukovic in
Stanford. NV centres in diamond nanocrystal are under development by S. Prawer
in Melbourne. An interesting approach based on down conversion in optical fibers
is being studied by A. Migdall in NIST. Sources based on single atoms in optical
cavities have been demonstrated by H. Walther in Munich and P. Grangier in Paris.
Once routinely available, single photon sources will enable a new generation of ex-
periments in single photon quantum optics.

Beginning in the early 1980s a number of pioneers including G. Ashkin, C. Cohen
Tannoudji and S. Chu began to study the forces exerted on atoms by light. This work
led to the ability to cool and trap ensembles of atoms, or even single atoms, and cul-
minated in the experimental demonstration by E. Cornell and C. Weimann of a Bose
Einstein condensate using a dilute gas of rubidium atoms at NIST in 1995, followed
soon thereafter by W. Ketterle at Harvard. Discoveries in this field continue to en-
lighten our understanding of many body quantum physics, quantum information and
non linear quantum field theory. We hardly touch on this subject in this book, which
is already well covered in a number of recent excellent texts, choosing instead to
highlight some aspects of the emerging field of quantum atom optics.



Chapter 2
Quantisation of the Electromagnetic Field

Abstract The study of the quantum features of light requires the quantisation of
the electromagnetic field. In this chapter we quantise the field and introduce three
possible sets of basis states, namely, the Fock or number states, the coherent states
and the squeezed states. The properties of these states are discussed. The phase
operator and the associated phase states are also introduced.

2.1 Field Quantisation

The major emphasis of this text is concerned with the uniquely quantum-mechanical
properties of the electromagnetic field, which are not present in a classical treatment.
As such we shall begin immediately by quantizing the electromagnetic field. We
shall make use of an expansion of the vector potential for the electromagnetic field in
terms of cavity modes. The problem then reduces to the quantization of the harmonic
oscillator corresponding to each individual cavity mode.

We shall also introduce states of the electromagnetic field appropriate to the de-
scription of optical fields. The first set of states we introduce are the number states
corresponding to having a definite number of photons in the field. It turns out that
it is extremely difficult to create experimentally a number state of the field, though
fields containing a very small number of photons have been generated. A more typ-
ical optical field will involve a superposition of number states. One such field is
the coherent state of the field which has the minimum uncertainty in amplitude and
phase allowed by the uncertainty principle, and hence is the closest possible quan-
tum mechanical state to a classical field. It also possesses a high degree of optical
coherence as will be discussed in Chap. 3, hence the name coherent state. The coher-
ent state plays a fundamental role in quantum optics and has a practical significance
in that a highly stabilized laser operating well above threshold generates a coher-
ent state.

A rather more exotic set of states of the electromagnetic field are the squeezed
states. These are also minimum-uncertainty states but unlike the coherent states the
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quantum noise is not uniformly distributed in phase. Squeezed states may have
less noise in one quadrature than the vacuum. As a consequence the noise in the
other quadrature is increased. We introduce the basic properties of squeezed states
in this chapter. In Chap. 8 we describe ways to generate squeezed states and their
applications.

While states of definite photon number are readily defined as eigenstates of the
number operator a corresponding description of states of definite phase is more diffi-
cult. This is due to the problems involved in constructing a Hermitian phase operator
to describe a bounded physical quantity like phase. How this problem may be re-
solved together with the properties of phase states is discussed in the final section
of this chapter.

A convenient starting point for the quantisation of the electromagnetic field is
the classical field equations. The free electromagnetic field obeys the source free
Maxwell equations.

∇ ·B = 0 , (2.1a)

∇×E = −∂B
∂ t

, (2.1b)

∇ ·D = 0 , (2.1c)

∇×H =
∂D
∂ t

, (2.1d)

where B = μ0H, D = ε0E, μ0 and ε0 being the magnetic permeability and electric
permittivity of free space, and μ0ε0 = c−2. Maxwell’s equations are gauge invariant
when no sources are present. A convenient choice of gauge for problems in quan-
tum optics is the Coulomb gauge. In the Coulomb gauge both B and E may be
determined from a vector potential A(r, t) as follows

B = ∇×A , (2.2a)

E =−∂A
∂ t

, (2.2b)

with the Coulomb gauge condition

∇ ·A = 0 . (2.3)

Substituting (2.2a) into (2.1d) we find that A(r, t) satisfies the wave equation

∇2A(r,t) =
1
c2

∂ 2A(r,t)
∂ t2 . (2.4)

We separate the vector potential into two complex terms

A(r,t) = A(+) (r,t)+ A(−) (r,t) , (2.5)

where A(+)(r, t) contains all amplitudes which vary as e−iωt for ω > 0 and
A(−)(r, t) contains all amplitudes which vary as eiωt and A(−) = (A(+))∗.
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It is more convenient to deal with a discrete set of variables rather than the whole
continuum. We shall therefore describe the field restricted to a certain volume of
space and expand the vector potential in terms of a discrete set of orthogonal mode
functions:

A(+) (r,t) = ∑
k

ckuk(r)e−iωkt , (2.6)

where the Fourier coefficients ck are constant for a free field. The set of vector mode
functions uk(r) which correspond to the frequency ωk will satisfy the wave equation

(
∇2 +

ω2
k

c2

)
uk (r) = 0 (2.7)

provided the volume contains no refracting material. The mode functions are also
required to satisfy the transversality condition,

∇ ·uk (r) = 0 . (2.8)

The mode functions form a complete orthonormal set
∫
V

u∗k (r)uk′(r)dr = δkk′ . (2.9)

The mode functions depend on the boundary conditions of the physical volume
under consideration, e.g., periodic boundary conditions corresponding to travelling-
wave modes or conditions appropriate to reflecting walls which lead to standing
waves. For example, the plane wave mode functions appropriate to a cubical volume
of side L may be written as

uk (r) = L−3/2ê(λ ) exp(ik · r) (2.10)

where ê(λ ) is the unit polarization vector. The mode index k describes several dis-
crete variables, the polarisation index (λ = 1, 2) and the three Cartesian components
of the propagation vector k. Each component of the wave vector k takes the values

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx,ny,nz = 0,±1,±2, . . . (2.11)

The polarization vector ê(λ ) is required to be perpendicular to k by the transversality
condition (2.8).

The vector potential may now be written in the form

A(r,t) = ∑
k

(
�

2ωkε0
.

)1/2 [
akuk(r)e−iωkt + a†

ku∗k (r)eiωkt
]

. (2.12)

The corresponding form for the electric field is
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E(r,t) = i∑
k

(
�ωk

2ε0

)1/2 [
akuk (r)e−iωkt −a†

ku∗k(r)e
iωkt

]
. (2.13)

The normalization factors have been chosen such that the amplitudes ak and a†
k are

dimensionless.
In classical electromagnetic theory these Fourier amplitudes are complex num-

bers. Quantisation of the electromagnetic field is accomplished by choosing ak and
a†

k to be mutually adjoint operators. Since photons are bosons the appropriate com-
mutation relations to choose for the operators ak and a†

k are the boson commutation
relations

[ak,ak′ ] =
[
a†

k ,a
†
k′
]

= 0,
[
ak,a

†
k′
]

= δkk′ . (2.14)

The dynamical behaviour of the electric-field amplitudes may then be described by
an ensemble of independent harmonic oscillators obeying the above commutation
relations. The quantum states of each mode may now be discussed independently of
one another. The state in each mode may be described by a state vector |Ψ〉k of the
Hilbert space appropriate to that mode. The states of the entire field are then defined
in the tensor product space of the Hilbert spaces for all of the modes.

The Hamiltonian for the electromagnetic field is given by

H =
1
2

∫ (
ε0E2 + μ0H2)dr . (2.15)

Substituting (2.13) for E and the equivalent expression for H and making use of the
conditions (2.8) and (2.9), the Hamiltonian may be reduced to the form

H = ∑
k

�ωk

(
a†

kak +
1
2

)
. (2.16)

This represents the sum of the number of photons in each mode multiplied by the
energy of a photon in that mode, plus 1

2 h̄ωk representing the energy of the vacuum
fluctuations in each mode. We shall now consider three possible representations of
the electromagnetic field.

2.2 Fock or Number States

The Hamiltonian (2.15) has the eigenvalues hωk(nk + 1
2 ) where nk is an integer

(nk = 0, 1, 2, . . . , ∞). The eigenstates are written as |nk〉 and are known as number
or Fock states. They are eigenstates of the number operator Nk = a†

kak

a†
kak|nk〉= nk|nk〉 . (2.17)

The ground state of the oscillator (or vacuum state of the field mode) is defined by
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ak|0〉= 0 . (2.18)

From (2.16 and 2.18) we see that the energy of the ground state is given by

〈0|H|0 =
1
2 ∑

k

�ωk . (2.19)

Since there is no upper bound to the frequencies in the sum over electromagnetic
field modes, the energy of the ground state is infinite, a conceptual difficulty of quan-
tized radiation field theory. However, since practical experiments measure a change
in the total energy of the electromagnetic field the infinite zero-point energy does not
lead to any divergence in practice. Further discussions on this point may be found
in [1]. ak and a†

k are raising and lowering operators for the harmonic oscillator ladder
of eigenstates. In terms of photons they represent the annihilation and creation of a
photon with the wave vector k and a polarisation êk. Hence the terminology, annihi-
lation and creation operators. Application of the creation and annihilation operators
to the number states yield

ak|nk〉= n1/2
k |nk−1〉, a†

k |nk〉= (nk + 1)1/2 |nk + 1〉 . (2.20)

The state vectors for the higher excited states may be obtained from the vacuum by
successive application of the creation operator

|nk〉=
(

a†
k

)nk

(nk!)1/2
|0〉, nk = 0,1,2 . . . . (2.21)

The number states are orthogonal

〈nk|mk〉= δmn , (2.22)

and complete
∞

∑
nk=0
|nk〉〈nk|= 1 . (2.23)

Since the norm of these eigenvectors is finite, they form a complete set of basis
vectors for a Hilbert space.

While the number states form a useful representation for high-energy photons,
e.g. γ rays where the number of photons is very small, they are not the most suitable
representation for optical fields where the total number of photons is large. Experi-
mental difficulties have prevented the generation of photon number states with more
than a small number of photons (but see 16.4.2). Most optical fields are either a su-
perposition of number states (pure state) or a mixture of number states (mixed state).
Despite this the number states of the electromagnetic field have been used as a basis
for several problems in quantum optics including some laser theories.
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2.3 Coherent States

A more appropriate basis for many optical fields are the coherent states [2]. The
coherent states have an indefinite number of photons which allows them to have
a more precisely defined phase than a number state where the phase is completely
random. The product of the uncertainty in amplitude and phase for a coherent state is
the minimum allowed by the uncertainty principle. In this sense they are the closest
quantum mechanical states to a classical description of the field. We shall outline the
basic properties of the coherent states below. These states are most easily generated
using the unitary displacement operator

D(α) = exp
(
αa†−α∗a

)
, (2.24)

where α is an arbitrary complex number.
Using the operator theorem [2]

eA+B = eAeBe−[A,B]/2 , (2.25)

which holds when
[A, [A,B]] = [B, [A,B]] = 0,

we can write D(α) as

D(α) = e−|α |
2/2eαa†

e−α∗a . (2.26)

The displacement operator D(α) has the following properties

D† (α) = D−1 (α) = D(−α) , D† (α)aD(α) = a + α,

D† (α)a†D(α) = a† + α∗ . (2.27)

The coherent state |α〉 is generated by operating with D(α) on the vacuum state

|α〉= D(α) |0〉 . (2.28)

The coherent states are eigenstates of the annihilation operator a. This may be
proved as follows:

D† (α)a|α〉= D† (α)aD(α) |0〉= (a + α) |0〉= α|0〉 . (2.29)

Multiplying both sides by D(α) we arrive at the eigenvalue equation

a|α〉= α|α〉 . (2.30)

Since a is a non-Hermitian operator its eigenvalues α are complex.
Another useful property which follows using (2.25) is

D(α + β ) = D(α)D(β )exp(−i Im{αβ ∗}) . (2.31)
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The coherent states contain an indefinite number of photons. This may be made ap-
parent by considering an expansion of the coherent states in the number states basis.

Taking the scalar product of both sides of (2.30) with 〈n| we find the recursion
relation

(n + 1)1/2 〈n + 1|α〉= α〈n|α〉 . (2.32)

It follows that

〈n|α〉= αn

(n!)1/2
〈0|α〉 . (2.33)

We may expand |α〉 in terms of the number states |n〉 with expansion coefficients
〈n|α〉 as follows

|α〉= ∑ |n〉〈n|α〉= 〈0|α〉∑
n

αn

(n!)1/2
|n〉 . (2.34)

The squared length of the vector |α〉 is thus

|〈α|α〉|2 = |〈0|α〉|2 ∑
n

|α|2n

n!
= |〈0|α〉|2e|α |

2
. (2.35)

It is easily seen that

〈0|α〉= 〈0|D(α) |0〉
= e−|α |

2/2 . (2.36)

Thus |〈α|α〉|2 = 1 and the coherent states are normalized.
The coherent state may then be expanded in terms of the number states as

|α〉= e−|α |
2/2 ∑ αn

(n!)1/2
|n〉 . (2.37)

We note that the probability distribution of photons in a coherent state is a Poisson
distribution

P(n) = |〈n|α〉|2 =
|α|2ne−|α |2

n!
, (2.38)

where |α|2 is the mean number of photons (n̄ = 〈α|a† a|α〉= |α|2).
The scalar product of two coherent states is

〈β |α〉= 〈0|D† (β )D(α) |0〉 . (2.39)

Using (2.26) this becomes

〈β |α〉= exp

[
−1

2

(|α|2 + |β |2)+ αβ ∗
]

. (2.40)

The absolute magnitude of the scalar product is
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|〈β |α〉|2 = e−|α−β |2 . (2.41)

Thus the coherent states are not orthogonal although two states |α〉 and |β 〉 become
approximately orthogonal in the limit |α−β | � 1. The coherent states form a two-
dimensional continuum of states and are, in fact, overcomplete. The completeness
relation

1
π

∫
|α〉〈α|d2α = 1 , (2.42)

may be proved as follows.
We use the expansion (2.37) to give

∫
|α〉〈α|d

2α
π

=
∞

∑
n=0

∞

∑
m=0

|n〉〈m|
π
√

n!m!

∫
e−|α |

2α∗mαnd2α . (2.43)

Changing to polar coordinates this becomes

∫
|α〉〈α|d

2α
π

=
∞

∑
n,m=0

|n〉〈m|
π
√

n!m!

∞∫
0

rdre−r2
rn+m

2π∫
0

dθei(n−m)θ . (2.44)

Using
2π∫

0

dθei(n−m)θ = 2πδnm , (2.45)

we have ∫
|α〉〈α|d

2α
π

=
∞

∑
n=0

|n〉〈n|
n!

∞∫
0

dε e−ε εn , (2.46)

where we let ε = r2. The integral equals n!. Hence we have

∫
|α〉〈α|d

2α
π

=
∞

∑
n=0
|n〉〈n = 1 , (2.47)

following from the completeness relation for the number states.
An alternative proof of the completeness of the coherent states may be given as

follows. Using the relation [3]

eζBAe−ζB = A + ζ [B,A]+
ζ 2

2!
[B, [B,A]]+ · · · , (2.48)

it is easy to see that all the operators A such that

D† (α)AD(α) = A (2.49)

are proportional to the identity.
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We consider
A =

∫
d2α|α〉〈α|

then

D† (β )
∫

d2α|α〉〈α|D(β ) =
∫

d2α|α−β 〉〈α−β |=
∫

d2α|α〉〈α| . (2.50)

Then using the above result we conclude that
∫

d2α|α〉〈α| ∝ I . (2.51)

The constant of proportionality is easily seen to be π.
The coherent states have a physical significance in that the field generated by

a highly stabilized laser operating well above threshold is a coherent state. They
form a useful basis for expanding the optical field in problems in laser physics and
nonlinear optics. The coherence properties of light fields and the significance of the
coherent states will be discussed in Chap. 3.

2.4 Squeezed States

A general class of minimum-uncertainty states are known as squeezed states. In
general, a squeezed state may have less noise in one quadrature than a coherent
state. To satisfy the requirements of a minimum-uncertainty state the noise in the
other quadrature is greater than that of a coherent state. The coherent states are a
particular member of this more general class of minimum uncertainty states with
equal noise in both quadratures. We shall begin our discussion by defining a family
of minimum-uncertainty states. Let us calculate the variances for the position and
momentum operators for the harmonic oscillator

q =

√
�

2ω
(
a + a†) , p = i

√
�ω
2

(
a−a†) . (2.52)

The variances are defined by

V (A) = (ΔA)2 = 〈A2〉− 〈A〉2 . (2.53)

In a coherent state we obtain

(Δq)2
coh =

�

2ω
, (Δp)2

coh =
�ω
2

. (2.54)

Thus the product of the uncertainties is a minimum
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(ΔpΔq)coh =
�

2
. (2.55)

Thus, there exists a sense in which the description of the state of an oscillator by a
coherent state represents as close an approach to classical localisation as possible.
We shall consider the properties of a single-mode field. We may write the annihila-
tion operator a as a linear combination of two Hermitian operators

a =
X1 + iX2

2
. (2.56)

X1 and X2, the real and imaginary parts of the complex amplitude, give dimension-
less amplitudes for the modes’ two quadrature phases. They obey the following
commutation relation

[X1,X2] = 2i (2.57)

The corresponding uncertainty principle is

ΔX1 ΔX2 ≥ 1 . (2.58)

This relation with the equals sign defines a family of minimum-uncertainty states.
The coherent states are a particular minimum-uncertainty state with

ΔX1 = ΔX2 = 1 . (2.59)

The coherent state |α〉 has the mean complex amplitude α and it is a minimum-
uncertainty state for X1 and X2, with equal uncertainties in the two quadrature
phases. A coherent state may be represented by an “error circle” in a complex am-
plitude plane whose axes are X1 and X2 (Fig. 2.1a). The center of the error circle lies
at 1

2 〈X1 + iX2〉 = α and the radius ΔX1 = ΔX2 = 1 accounts for the uncertainties in
X1 and X2.

(a)

X1

Y1

er

e–rY2
X2

φ

(b)

Fig. 2.1 Phase space representation showing contours of constant uncertainty for (a) coherent state
and (b) squeezed state |α ,ε〉
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There is obviously a whole family of minimum-uncertainty states defined by
ΔX1ΔX2 = 1. If we plot ΔX1 against ΔX2 the minimum-uncertainty states lie on a
hyperbola (Fig. 2.2). Only points lying to the right of this hyperbola correspond
to physical states. The coherent state with ΔX1 = ΔX2 is a special case of a more
general class of states which may have reduced uncertainty in one quadrature at
the expense of increased uncertainty in the other (ΔX1 < 1 < ΔX2). These states
correspond to the shaded region in Fig. 2.2. Such states we shall call squeezed states
[4]. They may be generated by using the unitary squeeze operator [5]

S (ε) = exp
(
1/2ε∗a2−1/2εa†2) . (2.60)

where ε = re2iφ .
Note the squeeze operator obeys the relations

S† (ε) = S−1 (ε) = S (−ε) , (2.61)

and has the following useful transformation properties

S† (ε)aS (ε) = acoshr−a†e−2iφ sinhr,

S† (ε)a†S (ε) = a† coshr−ae−2iφ sinhr ,

S† (ε)(Y1 + iY2)S (ε) = Y1e−r + iY2er, (2.62)

where
Y1 + iY2 = (X1 + iX2)e−iφ (2.63)

is a rotated complex amplitude. The squeeze operator attenuates one component of
the (rotated) complex amplitude, and it amplifies the other component. The degree
of attenuation and amplification is determined by r = |ε|, which will be called the
squeeze factor. The squeezed state |α,ε〉 is obtained by first squeezing the vacuum
and then displacing it

Fig. 2.2 Plot of ΔX1 ver-
sus ΔX2 for the minimum-
uncertainty states. The dot
marks a coherent state while
the shaded region corresponds
to the squeezed states
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|α,ε〉 = D(α)S (ε) |0〉 . (2.64)

A squeezed state has the following expectation values and variances

〈X1 + iX2〉= 〈Y1 + iY2〉eiφ = 2α,

ΔY1 = e−r, ΔY2 = er,

〈N〉= |α2|+ sinh2 r,

(ΔN)2 = |α coshr−α∗e2iφ sinhr|2 + 2cosh2 r sinh2 r . (2.65)

Thus the squeezed state has unequal uncertainties for Y1 and Y2 as seen in the error
ellipse shown in Fig. 2.1b. The principal axes of the ellipse lie along the Y1 and Y2

axes, and the principal radii are ΔY1 and ΔY2. A more rigorous definition of these
error ellipses as contours of the Wigner function is given in Chap. 3.

2.5 Two-Photon Coherent States

We may define squeezed states in an alternative but equivalent way [6]. As this
definition is sometimes used in the literature we include it for completeness.

Consider the operator
b = μa + νa† (2.66)

where
|μ |2−|ν|2 = 1 .

Then b obeys the commutation relation

[
b,b†]= 1 . (2.67)

We may write (2.66) as
b = UaU† (2.68)

where U is a unitary operator. The eigenstates of b have been called two-photon
coherent states and are closely related to the squeezed states.

The eigenvalue equation may be written as

b|β 〉g = β |β 〉g . (2.69)

From (2.68) it follows that
|β 〉g = U |β 〉 (2.70)

where |β 〉 are the eigenstates of a.
The properties of |β 〉g may be proved to parallel those of the coherent states. The

state |β 〉g may be obtained by operating on the vacuum

|β 〉g = Dg (β ) |0〉g (2.71)
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with the displacement operator

Dg (β ) = eβ b†−β ∗b (2.72)

and |0〉g = U |0〉. The two-photon coherent states are complete

∫
|β 〉g g〈β |d

2β
π

= 1 (2.73)

and their scalar product is

g〈β |β ′〉g = exp

(
β ∗β ′ − 1

2
|β |2− 1

2

∣∣β ′∣∣2
)

. (2.74)

We now consider the relation between the two-photon coherent states and the
squeezed states as previously defined. We first note that

U ≡ S (ε)

with μ = coshr and ν = e2iφ sinhr. Thus

|0〉g ≡ |0,ε〉 (2.75)

with the above relations between (μ ,ν) and (r, θ ). Using this result in (2.71) and
rewriting the displacement operator, Dg(β ), in terms of a and a† we find

|β 〉g = D(α)S (ε) |0〉= |α,ε| (2.76)

where
α = μβ −νβ ∗ .

Thus we have found the equivalent squeezed state for the given two-photon coher-
ent state.

Finally, we note that the two-photon coherent state |β 〉g may be written as

|β 〉g = S (ε)D(β ) |0〉 .

Thus the two-photon coherent state is generated by first displacing the vacuum state,
then squeezing. This is the opposite procedure to that which defines the squeezed
state |α, ε〉. The two procedures yield the same state if the displacement parameters
α and β are related as discussed above.

The completeness relation for the two-photon coherent states may be employed
to derive the completeness relation for the squeezed states. Using the above results
we have

∫
d2β

π
|β coshr−β ∗e2iφ sinhr, ε〉〈β coshr−β ∗e2iφ sinhr, ε|= 1 . (2.77)
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The change of variable

α = β coshr−β ∗e2iφ sinhr (2.78)

leaves the measure invariant, that is d2α = d2β . Thus

∫
d2α

π
|α, ε〉〈α,ε| = 1 . (2.79)

2.6 Variance in the Electric Field

The electric field for a single mode may be written in terms of the operators X1 and
X2 as

E (r,t) =
1√
L3

(
�ω
2ε0

)1/2

[X1 sin(ωt−k · r)−X2 cos(ωt−k · r)] . (2.80)

The variance in the electric field is given by

V (E (r,t)) = K
{

V (X1)sin2 (ωt−k · r)+V (X2)cos2 (ωt−k · r)
−sin [2(ωt−k · r)]V (X1,X2)} (2.81)

where

K =
1
L3

(
2�ω
ε0

)
,

V (X1,X2) =
〈(X1X2)+ (X2X1)〉

2
−〈X1〉〈X2〉.

For a minimum-uncertainty state

V (X1,X2) = 0 . (2.82)

Hence (2.81) reduces to

V (E (r,t)) = K
[
V (X1)sin2 (ωt−k · r)+V (X2)cos2 (ωt−k · r)] . (2.83)

The mean and uncertainty of the electric field is exhibited in Figs. 2.3a–c where the
line is thickened about a mean sinusoidal curve to represent the uncertainty in the
electric field.

The variance of the electric field for a coherent state is a constant with time
(Fig. 2.3a). This is due to the fact that while the coherent-state-error circle rotates
about the origin at frequency ω , it has a constant projection on the axis defining
the electric field. Whereas for a squeezed state the rotation of the error ellipse leads
to a variance that oscillates with frequency 2ω . In Fig. 2.3b the coherent excitation
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Fig. 2.3 Plot of the electric
field versus time showing
schematically the uncertainty
in phase and amplitude for
(a) a coherent state, (b) a
squeezed state with reduced
amplitude fluctuations, and
(c) a squeezed state with
reduced phase fluctuations

appears in the quadrature that has reduced noise. In Fig. 2.3c the coherent excitation
appears in the quadrature with increased noise. This situation corresponds to the
phase states discussed in [7] and in the final section of this chapter.

The squeezed state |α, r〉 has the photon number distribution [6]

p(n) = (n!cosh r)−1
[

1
2

tanhr

]n

exp

[
−|α |2− 1

2
tanhr

(
(α∗)2 eiφ +α2e−iφ

)]
|Hn (z) |2

(2.84)
where

z =
α + α∗eiφ tanhr√

2eiφ tanhr
.

The photon number distribution for a squeezed state may be broader or narrower
than a Poissonian depending on whether the reduced fluctuations occur in the phase
(X2) or amplitude (X1) component of the field. This is illustrated in Fig. 2.4a where
we plot P(n) for r = 0, r > 0, and r < 0. Note, a squeezed vacuum (α = 0) contains
only even numbers of photons since Hn(0) = 0 for n odd.
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Fig. 2.4 Photon number distribution for a squeezed state |α , r〉: (a) α = 3, r = 0, 0.5, −0.5,
(b) α = 3, r = 1.0

For larger values of the squeeze parameter r, the photon number distribution ex-
hibits oscillations, as depicted in Fig. 2.4b. These oscillations have been interpreted
as interference in phase space [8].

2.7 Multimode Squeezed States

Multimode squeezed states are important since several devices produce light which
is correlated at the two frequencies ω+ and ω−. Usually these frequencies are sym-
metrically placed either side of a carrier frequency. The squeezing exists not in the
single modes but in the correlated state formed by the two modes.

A two-mode squeezed state may be defined by [9]

|α+,α−〉= D+ (α+)D− (α−)S (G) |0〉 (2.85)

where the displacement operator is

D± (α) = exp
(

αa†
±−α∗a±

)
, (2.86)

and the unitary two-mode squeeze operator is
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S (G) = exp
(

G∗a+a−−Ga†
+a†
−
)

. (2.87)

The squeezing operator transforms the annihilation operators as

S†(G)a± S(G) = a± coshr−a†
∓ eiθ sinhr , (2.88)

where G = reiθ .
This gives for the following expectation values

〈a±〉= α±
〈a±a±〉= α2

±
〈a+a−〉= α+α−− eiθ sinhr coshr

〈a†
±a±〉= |α±|2 + sinh2 r.

(2.89)

The quadrature operator X is generalized in the two-mode case to

X =
1√
2

(
a+ + a†

+ + a−+ a†
−
)

. (2.90)

As will be seen in Chap. 5, this definition is a particular case of a more general
definition. It corresponds to the degenerate situation in which the frequencies of the
two modes are equal.

The mean and variance of X in a two-mode squeezed state is

〈X〉= 2(Re{α+}+ Re{α−}),

V (X) =
(

e−2r cos2 θ
2

+ e2r sin2 θ
2

)
. (2.91)

These results for two-mode squeezed states will be used in the analyses of nonde-
generate parametric oscillation given in Chaps. 4 and 6.

2.8 Phase Properties of the Field

The definition of an Hermitian phase operator corresponding to the physical phase of
the field has long been a problem. Initial attempts by P. Dirac led to a non-Hermitian
operator with incorrect commutation relations. Many of these difficulties were made
quite explicit in the work of Susskind and Glogower [10]. Pegg and Barnett [11]
showed how to construct an Hermitian phase operator, the eigenstates of which, in
an appropriate limit, generate the correct phase statistics for arbitrary states. We will
first discuss the Susskind–Glogower (SG) phase operator.

Let a be the annihilation operator for a harmonic oscillator, representing a single
field mode. In analogy with the classical polar decomposition of a complex ampli-
tude we define the SG phase operator,
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eiφ =
(
aa†)−1/2

a . (2.92)

The operator eiφ has the number state expansion

eiφ =
∞

∑
n=1
|n〉〈n + 1| (2.93)

and eigenstates |eiφ 〉 like

|eiφ 〉=
∞

∑
n=1

einφ |n〉 for −π < φ ≤ π . (2.94)

It is easy to see from (2.93) that eiφ is not unitary,
[

eiφ ,
(

eiφ
)†
]

= |0〉〈0| . (2.95)

An equivalent statement is that the SG phase operator is not Hermitian. As an im-
mediate consequence the eigenstates |eiφ 〉 are not orthogonal. In many ways this
is similar to the non-orthogonal eigenstates of the annihilation operator a, i.e. the
coherent states. None-the-less these states do provide a resolution of identity

π∫
−π

dφ
∣∣∣eiφ 〉〈eiφ

∣∣∣= 2π . (2.96)

The phase distribution over the window −π < φ ≤ π for any state |ψ〉 is then de-
fined by

P(φ) =
1

2π
|〈eiφ |ψ〉|2 . (2.97)

The normalisation integral is

π∫
−π

P(φ)dφ = 1 . (2.98)

The question arises; does this distribution correspond to the statistics of any physical
phase measurement? At the present time there does not appear to be an answer.
However, there are theoretical grounds [12] for believing that P(φ) is the correct
distribution for optimal phase measurements. If this is accepted then the fact that
the SG phase operator is not Hermitian is nothing to be concerned about. However,
as we now show, one can define an Hermitian phase operator, the measurement
statistics of which converge, in an appropriate limit, to the phase distribution of
(2.97) [13].

Consider the state |φ0〉 defined on a finite subspace of the oscillator Hilbert
space by
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|φ0〉= (s+ 1)−1/2
s

∑
n=1

einφ0 |n〉 . (2.99)

It is easy to demonstrate that the states |φ〉 with the values of φ differing from φ0 by
integer multiples of 2π/(s+ 1) are orthogonal. Explicitly, these states are

|φm〉= exp

(
i
a†a m 2π

s+ 1

)
|φ0〉; m = 0,1, . . . ,s , (2.100)

with

φm = φ0 +
2πm
s+ 1

.

Thus φ0 ≤ φm < φ0 + 2π . In fact, these states form a complete orthonormal set on
the truncated (s+1) dimensional Hilbert space. We now construct the Pegg–Barnett
(PB) Hermitian phase operator

φ =
s

∑
m=1

φm|φm〉〈φm| . (2.101)

For states restricted to the truncated Hilbert space the measurement statistics of φ
are given by the discrete distribution

Pm = |〈φm|ψ〉s|2 (2.102)

where |ψ〉s is any vector of the truncated space.
It would seem natural now to take the limit s→∞ and recover an Hermitian phase

operator on the full Hilbert space. However, in this limit the PB phase operator does
not converge to an Hermitian phase operator, but the distribution in (2.102) does
converge to the SG phase distribution in (2.97). To see this, choose φ0 = 0.

Then

Pm = (s+ 1)−1

∣∣∣∣∣
s

∑
n=0

exp

(
−i

nm2π
s+ 1

)
ψn

∣∣∣∣∣
2

(2.103)

where ψn = 〈n|ψ〉s.
As φm are uniformly distributed over 2π we define the probability density by

P(φ) = lim
s→∞

[(
2π

s+ 1

)−1

Pm

]
=

1
2π

∣∣∣∣∣
∞

∑
n=1

einφ ψn

∣∣∣∣∣
2

(2.104)

where

φ = lim
s→∞

2πm
s+ 1

, (2.105)

and ψn is the number state coefficient for any Hilbert space state. This convergence
in distribution ensures that the moments of the PB Hermitian phase operator con-
verge, as s→ ∞, to the moments of the phase probability density.



26 2 Quantisation of the Electromagnetic Field

The phase distribution provides a useful insight into the structure of fluctuations
in quantum states. For example, in the number state |n〉, the mean and variance of
the phase distribution are given by

〈φ〉= φ0 + π , (2.106)

and

V (φ) =
2
3

π , (2.107)

respectively. These results are characteristic of a state with random phase. In the
case of a coherent state |reiθ 〉 with r� 1, we find

〈φ〉= φ , (2.108)

V (φ) =
1

4n̄
, (2.109)

where n̄ = 〈a†a〉= r2 is the mean photon number. Not surprisingly a coherent state
has well defined phase in the limit of large amplitude.

Exercises

2.1 If |X1〉 is an eigenstate for the operator X1 find 〈X1|ψ〉 in the cases (a) |ψ〉= |α〉;
(b) |ψ〉= |α,r〉.

2.2 Prove that if |ψ〉 is a minimum-uncertainty state for the operators X1 and X2,
then V (X1,X2) = 0.

2.3 Show that the squeeze operator

S (r,φ) = exp
[ r

2

(
e−2iφ a2− e2iφ a†2

)]

may be put in the normally ordered form

S (r,φ) = (coshr)−1/2 exp

(
−Γ

2
a†2

)
exp

[− ln(coshr)a†a
]

exp

(
Γ ∗

2
a2
)

where Γ = e2iθ tanhr.
2.4 Evaluate the mean and variance for the phase operator in the squeezed state
|α,r〉 with α real. Show that for |r| � |α| this state has either enhanced or
diminished phase uncertainty compared to a coherent state.
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Chapter 3
Coherence Properties
of the Electromagnetic Field

Abstract In this chapter correlation functions for the electromagnetic field are intro-
duced from which a definition of optical coherence may be formulated. It is shown
that the coherent states possess nth-order optical coherence. Photon-correlation
measurements and the phenomena of photon bunching and antibunching are de-
scribed. Phase-dependent correlation functions which are accessible via homo-
dyne measurements are introduced. The theory of photon counting measurements
is given.

3.1 Field-Correlation Functions

We shall now consider the detection of an electromagnetic field. A large-scale
macroscopic device is complicated, hence, we shall study a simple device, an ideal
photon counter. The most common devices in practice involve a transition where
a photon is absorbed. This has important consequences since this type of counter
is insensitive to spontaneous emission. A complete theory of detection of light re-
quires a knowledge of the interaction of light with atoms. We shall postpone this
until a study of the interaction of light with atoms is made in Chap. 10. At this stage
we shall assume we have an ideal detector working on an absorption mechanism
which is sensitive to the field E(+) (r,t) at the space-time point (r,t). We follow the
treatment of Glauber [1].

The transition probability of the detector for absorbing a photon at position r and
time t is proportional to

Ti f = |〈 f |E(+)(r, t)|i〉|2 (3.1)

if |i〉 and | f 〉 are the initial and final states of the field. We do not, in fact, measure
the final state of the field but only the total counting rate. To obtain the total count
rate we must sum over all states of the field which may be reached from the initial
state by an absorption process. We can extend the sum over a complete set of final
states since the states which cannot be reached (e.g., states | f 〉 which differ from |i〉

29
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by two or more photons) will not contribute to the result since they are orthogonal
to E(+) (r,t)|i〉. The total counting rate or average field intensity is

I(r, t) = ∑
f

Tf i = ∑
f

〈i|E(−)(r, t)| f 〉〈 f |E(+)(r, t)|i〉

= 〈i|E(−)(r, t)E(+)(r, t)|i〉 , (3.2)

where we have used the completeness relation

∑
f

| f 〉〈 f | = 1 . (3.3)

The above result assumes that the field is in a pure state |i〉. The result may be
easily generalized to a statistical mixture state by averaging over initial states with
the probability Pi, i.e.,

I(r, t) = ∑
i

Pi〈i|E(−)(r, t)E(+)(r, t)|i〉 . (3.4)

This may be written as

I(r, t) = Tr {ρE(−)(r, t)E(+)(r, t)} , (3.5)

where ρ is the density operator defined by

ρ = ∑
i

Pi|i〉〈i| . (3.6)

If the field is initially in the vacuum state

ρ = |0〉〈0| , (3.7)

then the intensity is
I(r, t) = 〈0|E(−)E(+)|0〉= 0 . (3.8)

The normal ordering of the operators (that is, all annihilation operators are to the
right of all creation operators) yields zero intensity for the vacuum. This is a conse-
quence of our choice of an absorption mechanism for the detector. Had we chosen
a detector working on a stimulated emission principle, problems would arise with
vacuum fluctuations. More generally the correlation between the field at the space-
time point x = (r,t) and the field at the space-time point x′ = (r,t ′) may be written
as the correlation function

G(1)(x, x′) = Tr{ρE(−)(x)E(+)(x′)} . (3.9)

The first-order correlation function of the radiation field is sufficient to account for
classical interference experiments. To describe experiments involving intensity cor-
relations such as the Hanbury-Brown and Twiss experiment, it is necessary to define
higher-order correlation functions. We define the nth-order correlation function of
the electromagnetic field as
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G(n)(x1 . . . xn, xn+1 . . . x2n) = Tr{ρE(−)(x1) . . . E(−)(xn)

×E(+)(xn+1) . . . E(+)(x2n)} . (3.10)

Such an expression follows from a consideration of an n-atom photon detector [1].
The n-fold delayed coincidence rate is

W (n)(t1 . . . tn) = snG(n)(r1t1 . . . rntn, rntn . . . r1t1) , (3.11)

where s is the sensitivity of the detector.

3.2 Properties of the Correlation Functions

A number of interesting inequalities can be derived from the general expression

Tr{ρA† A} ≥ 0 , (3.12)

which follows from the non-negative character of A†A for any linear operator A.
Thus choosing A = E(+)(x) gives

G(1)(x, x)≥ 0 . (3.13)

In general, taking
A = E(+)(xn) . . . E(+)(x1) (3.14)

yields
G(n)(x1 . . . xn, xn . . . x1)≥ 0 (3.15)

Choosing

A =
n

∑
j=1

λ jE
(+)(x j) , (3.16)

where λ j are an arbitrary set of complex numbers gives

∑
i j

λ ∗i λ jG
(1)(xi,x j)≥ 0 . (3.17)

Thus the set of correlation functions G(1)(xi,x j) forms a matrix of coefficients for a
positive definite quadratic form. Such a matrix has a positive determinant, i.e.,

det[G(1)(xi,x j)]≥ 0 . (3.18)

For n = 1, this is simply (3.13). For n = 2 we find

G(1)(x1,x1)G(1)(x2,x2)≥ |G(1)(x1,x2)|2 (3.19)

which is a simple generalisation of the Schwarz inequality.
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Choosing

A = λ1E(+)(x1) . . . E(+)(xn)+ λ2E(+)(xn+1) . . . E(+)(x2n) , (3.20)

we find the general relation

G(n)(x1 . . . xn,xn . . .x1)G(n)(xn+1 . . . x2n,x2n . . .xn+1)

≥ |G(n)(x1 . . . xn,xn+1 . . . x2n)|2 . (3.21)

For two beams we may take

A = λ1E(+)
1 (x)E(+)

1 (x′)+ λ2E(+)
2 (x)E(+)

2 (x′) , (3.22)

with x≡ (r,0) and x′ ≡ (r,t). The Cauchy–Schwartz inequality then becomes

G(2)
11 (0)G(2)

22 (0)≥ [G(2)
12 (t)]2 , (3.23)

where
G(2)

i j (t) = Tr{ρE(−)
i (x)E(−)

i (x′)E(+)
j (x′)E(+)

j (x)} ; (3.24)

we have noted explicitly that G(2)
ii is time independent.

An inequality closely related to (3.23) may be derived by choosing

A = λ1E(−)
1 (x)E(+)

1 (x)+ λ2E(−)
2 (x)E(+)

2 (x) . (3.25)

This gives

|〈E(−)
1 (x)E(+)

1 (x)E(+)
2 (x)E(−)

2 (x)〉|2

≤ 〈[E(−)
1 (x)E(+)

1 (x)]2〉〈[E(−)
2 (x)E(+)

2 (x)]2〉 . (3.26)

This inequality will be used in Chap. 5.

3.3 Correlation Functions and Optical Coherence

Classical optical interference experiments correspond to a measurement of the first-
order correlation function. We shall consider Young’s interference experiment as
a measurement of the first-order correlation function of the field and show how a
definition of first-order optical coherence arises from considerations of the fringe
visibility.

A schematic sketch of Young’s interference experiment is depicted in Fig. 3.1.
The field incident on the screen at position r and time t is the superposition of the
fields at the two pin holes

E(+)(r, t) = E(+)
1 (r, t)+ E(+)

2 (r, t) (3.27)
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Fig. 3.1 Schematic represen-
tation of Young’s interference
experiment

where E(+)
i (r,t) is the field produced by pinhole i at the screen with

E(+)
i (r,t) = E(+)

i

(
ri, t− si

c

)( 1
si

)
ei(k−ω

c ) si (3.28)

where si = |ri− r|
and E(+)

i (ri,t− si/c) is the field at the ith pinhole and for a spherical wave

k− ω
c

= 0 .

Therefore (3.27) becomes

E(+)(r, t) =
E(+)

1

(
r1, t− s1

c

)
s1

+
E(+)

2

(
r2, t− s2

c

)
s2

. (3.29)

For s1 ≈ s2 ≈ R, we have

E(+)(r, t) =
1
R

[E(+)
1 (x1)+ E(+)

2 (x2)] (3.30)

where
x1 =

(
r1, t− s1

c

)
, x2 =

(
r2, t− s2

c

)
.

The intensity observed on the screen is proportional to

I = Tr{ρE(−)(r, t)E(+)(r, t)} . (3.31)

Using (3.27) we find

I = G(1)(x1, x1)+ G(1)(x2, x2)+ 2Re{G(1)(x1, x2)} (3.32)

where the R−2 factor is absorbed into a normalisation constant.
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The first two terms on the right-hand side are the intensities from each pinhole
in the absence of the other. The third term is the interference term. The correlation
function for x1 �= x2, in general takes on complex values. Writing this as

G(1)(x1, x2) = |G(1)(x1, x2)| eiΨ(x1, x2) , (3.33)

we find

I = G(1)(x1, x1)+ G(1)(x2, x2)+ 2|G(1)(x1, x2)|cosΨ(x1, x2) . (3.34)

The interference fringes arise from the oscillations of the cosine term. The envelope
of the fringes is described by the correlation function G(1)(x1,x2).

3.4 First-Order Optical Coherence

The idea of coherence in optics was first associated with the possibility of producing
interference fringes when two fields are superposed. The highest degree of optical
coherence was associated with a field which exhibits fringes with maximum vis-
ibility. If G(1)(x1,x2) was zero there would be no fringes and the fields are then
described as incoherent. Thus the larger G(1)(x1,x2) the more coherent the field.
The magnitude of |G(1)(x1,x2)| is limited by the relation

|G(1)(x1, x2)| ≤ [G(1)(x1, x1)G(1)(x2, x2)]1/2 . (3.35)

The best possible fringe contrast is given by the equality sign. Thus the necessary
condition for full coherence is

|G(1)(x1, x2)|= [G(1)(x1, x1)G(1)(x2, x2)]1/2 . (3.36)

Introducing the normalized correlation function

g(1)(x1, x2) =
G(1)(x1,x2)

[G(1)(x1,x1)G(1)(x2,x2)]1/2
, (3.37)

the condition (3.36) becomes

|g(1)(x1, x2)|= 1 (3.38)

or
g(1)(x1, x2) = eiΨ(x1, x2) .

The visibility of the fringes is given by

υ =
Imax− Imin

Imax− Imin
. (3.39)
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Using (3.27 and 3.31) for the intensity we may write υ as

υ =

∣∣∣∣∣
G(1)(x1, x2)

(G(1)(x1, x1)G(1)(x2, x2))1/2

∣∣∣∣∣
2(I1I2)1/2

I1 + I2

= |g(1)|2(I1I2)1/2

I1 + I2
. (3.40)

If the fields incident on each pinhole have equal intensities the fringe visibility is
equal to |g(1)|. Thus the condition for first-order optical coherence |g(1)| = 1 corre-
sponds to the condition for maximum fringe visibility.

A more general definition of first-order coherence of the field E(x) is that the
first-order correlation function factorizes

G(1)(x1, x2) = ε(−)(x1)ε(+)(x2) . (3.41)

It is readily seen that this is equivalent to the condition for first-order optical co-
herence given by (3.38). It is clear that for a field in a left eigenstate of the operator
E(+)(x) this factorization holds. The coherent states are an example of such a field. It
is precisely this coherence property of the coherent states which led to their names.

We may generalize (3.41) to give the condition for nth optical coherence. This
requires that the nth order correlation function factorizes:

G(n)(x1 . . . xn,xn+1, . . . ,x2n) = ε(−)(x1) . . . ε(−)(xn)ε(+)(xn+1) . . . ε(−)(x2n) .
(3.42)

Again the coherent states possess nth-order optical coherence.
Photon interference experiments of the kind typified by Young’s interference ex-

periment and Michelson’s interferometer played a central role in early discussions
of the dual wave and corpuscular nature of light. These experiments basically detect
the interference pattern resulting from the superposition of two components of a
light beam. Classical theory based on the wave nature of light readily explained the
observed interference pattern. The quantum-mechanical explanation is based on the
interference of the probability amplitudes for the photon to take either of two paths.
We shall demonstrate how interference occurs even for a one photon field. For full
details of the classical theory and experimental arrangements the reader is referred
to the classic text of Born and Wolf [2].

We consider an interference experiment of the type performed by Young which
consists of light from a monochromatic point source S incident on a screen possess-
ing two pinholes P1 and P2 which are equidistant from S (see Fig. 3.1).

The pinholes act as secondary monochromatic point sources which are in phase
and the beams from them are superimposed on a screen at position r and time t. In
this region an interference pattern is formed.

To avoid calculating the diffraction pattern for the pinhole, we assume their di-
mensions are of the order of the wavelength of light in which case they effectively
act as sources for single modes of spherical radiation in keeping with Huygen’s
principle. The appropriate mode functions for spherical radiation are
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uk(r) =

√
1

4πL
eik·r

r
êk , (3.43)

where L is the radius of the normalization volume, and êk is the unit polarization
vector.

The field detected on the screen at position r and time t is then the sum of the
two spherical modes emitted by the two pinholes

E(+)(r, t) = f (r,t)(a1eiks1 + a2eiks2) , (3.44)

with

f (r, t) = i

(
�ω
2

)1/2 êk

(4πL)1/2

1
R

e−iωt ,

where s1 and s2 are the distances of the pinholes P1 and P2 to the point on the screen,
and we have set s1 ≈ s2 = R in the denominator of the mode functions. Substituting
(3.43) into (3.2) for the intensity we find

I(r, t) = η [Tr{ρa†
1a1}+ Tr{ρa†

2a2}+ 2|Tr{ρa†
1a2}|cosΦ] . (3.45)

where

Tr{ρa†
1a2}= |Tr{ρa†

1a2}|eiφ ,

η = | f (r, t)|2,
Φ = k(s1− s2)+ φ .

This expression exhibits the typical interference fringes with the maximum of in-
tensity occurring at

k(s1− s2)+ φ = n2π , (3.46)

with n an integer.
The maximum intensity of the fringes falls off as one moves the point of obser-

vation further from the central line by the R−2 factor in | f (r,t)|2.
We shall evaluate the intensity for fields which may be generated by a single-

mode excitation and hence have first-order coherence. A general representation of
such a field is

|ψ〉= f (b†)|0〉 , (3.47)

where |0〉 denotes the vacuum state of the radiation field and b† is the creation
operator for a single mode of the radiation field. The operator b† may be expressed
as a linear combination of a†

1 and a†
2 as follows

b† =− 1√
2
(a†

1 + a†
2) , (3.48)

where we have assumed equal intensities through each slit. We shall now consider
as a special case the field with only one photon incident on the pinholes, i.e.,

|1 photon〉= b†|0〉= 1√
2
(|1,0〉+ |0,1〉) , (3.49)
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where the notation used for the eigenkets |n1,n2〉 implies that there are n1 photons
present in mode k1 and n2 photons present in mode k2. This state of the field reflects
the fact that we don’t know which pinhole the photon goes through.

From (3.45) this yields the following expression for the mean intensity on the
screen

I(r, t) = η(1 + cosΦ) . (3.50)

It is clear from this equation that an interference pattern may be built up from a
succession of one-photon interference fringes.

The quantum explanation for the interference pattern was first put forward by
Dirac [3] in his classic text on quantum mechanics. There he argued that the ob-
served intensity pattern results from interference between the probability amplitudes
of a single photon to take either of two possible paths. The crux of the quantum me-
chanical explanation is that the wavefunction gives information about the probabil-
ity of one photon being in a particular place and not the probable number of photons
in that place. Dirac pointed out that the interference between the two beams does not
arise because photons of one beam sometimes annihilate photons from the other, and
sometimes combine to produce four photons. “This would contradict the conserva-
tion of energy. The new theory which connects the wave functions with probabilities
for one photon gets over the difficulty by making each photon go partly into each of
two components. Each photon then interferes only with itself. Interference between
two different photons never occurs”. We stress that the above-quoted statement of
Dirac was only intended to apply to experiments of the Young’s type where the
interference pattern is revealed by detecting single photons. It was not intended to
apply to experiments of the type where correlations between different photons are
measured.

A very early experiment to test if interference would result from a single photon
was performed by Taylor [4] in 1905. In this experiment the intensity of the source
was so low that on average only one photon was incident on the slits at a time.
The photons were detected on a photographic plate so that the detection time was
very large. Interference fringes were observed in this experiment. This experiment
did not definitively show that the interference fringes resulted from a single photon
since the statistical distribution of photons meant that sometimes two photons could
be incident on the slits. A definitive experiment was conducted by Grangier et al.
[5] using a two-photon cascade as a source. A coincidence technique which detected
one photon of the pair enabled them to prepare a one photon source.

We now consider the interference patterns produced by other choices of a field.

3.5 Coherent Field

We consider a coherent field as generated by an ideal laser incident on the pinholes.
The wavefunction for this coherent field is

|coherent field〉= |α1, α2〉= |α1〉|α2〉 . (3.51)
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Since this wavefunction is a product state, it may well represent two independent
light beams. This particular product may, however, be generated by a single-mode
excitation in the following manner:

|α1〉|α2〉= exp(αb†−α∗b)|0〉
= exp

1√
2
(αa†

1−α∗a1)exp
1√
2
(αa†

2−α∗a2)|0〉

=
∣∣∣∣ α√

2

〉∣∣∣∣ α√
2

〉
. (3.52)

The intensity pattern produced by this coherent field is

I(r, t) = η(|α|2 + |α|2 cos φ) . (3.53)

The above example demonstrates the possibility of obtaining interference be-
tween independent light beams. Experimentally, this requires that the phase relation
between the two beams be slowly varying or else the fringe pattern will be washed
out. Such experiments have been performed by Pfleegor and Mandel [6]. Interfer-
ence between independent light beams is, however, only possible for certain states
of the radiation field, for example, the coherent states as demonstrated above. Inter-
ference is not generally obtained from independent light beams, as we shall demon-
strate in the following example. We consider the two independent light beams to be
Fock states, that is, described by the wavefunction

|ψ〉= |n1〉|n2〉 . (3.54)

This yields a zero correlation function and consequently no fringes are obtained.
The analysis we performed leading to (3.50) bears out Dirac’s argument that

the interference fringes may be produced by a series of one photon experiments.
However, Young’s interference fringes may perfectly well be explained by the inter-
ference of classical waves. Experiments of this kind which measure the first-order
correlation functions of the electromagnetic field do not distinguish between the
quantum and classical theories of light.

3.6 Photon Correlation Measurements

The first experiment performed outside the domain of one photon optics was the
intensity correlation experiment of Hanbury-Brown and Twiss [7]. Although the
original experiment involved the analogue correlation of photo-currents, later ex-
periments used photon counters and digital correlations and were truly photon cor-
relation measurements. In essence these experiments measure the joint photocount
probability of detecting the arrival of a photon at time t and another photon at time
t + τ . This may be written as an intensity or photon-number correlation function.
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Using the quantum detection theory developed by Glauber, the measured quantity
is the normally ordered correlation function

G(2)(τ) = 〈E(−)(t)E(−)(t + τ)E(+)(t + τ)E(+)(t)〉
= 〈: I(t)I(t + τ) :〉
∝ 〈: n(t)n(t + τ) :〉 (3.55)

where : : indicates normal ordering, I(t) is the intensity for analogue measurements
and n(t) is the photon number in photon counting experiments. It is useful to intro-
duce the normalized second-order correlation function defined by

g(2)(τ) =
G(2)(τ)
|G(1)(0)|2 . (3.56)

We shall evaluate g(2)(τ) for certain classes of field. For a field which possesses
second-order coherence

G(2)(τ) = ε(−)(t)ε(−)(t + τ)ε(+)(t + τ)ε(+)(t) = [G(1)(0)]2 . (3.57)

Hence g(2)(τ) = 1.
For a fluctuating classical field we may introduce a probability distribution P(ε)

describing the probability of the field E(+)(ε,t) having the amplitude ε where

E(+)(ε, t) =−
(

i
�ω

2ε0 V

)1/2

εe−iωt .

For a multimode field we have a multivariate probability distribution P({εk}). The
second-order correlation function G(2)(τ) may be written as

G(2)(τ) =
∫

P({εk})E(−)(εk, t)E(−)(εk, t + τ)E(+)(εk, t + τ)E(+)(εk, t)d2{εk} .

(3.58)

For zero time delay τ = 0 we may write for a single-mode field

g(2)(0) = 1 +
∫

P(ε)(|ε|2−〈|ε|2〉)2d2ε
(〈|ε|2〉)2 . (3.59)

For classical fields the probability distribution P(ε) is positive, hence g(2)(0)≥ 1.
For a field obeying Gaussian statistics with zero mean amplitude

〈E(−)(ε, t)E(−)(ε, t + τ)E(+)(ε, t)E(+)(ε, t + τ)〉
= 〈E(−)(ε, t)E(−)(ε, t + τ)〉〈E(+)(ε, t + τ)E(+)(ε, t)〉

+ 〈E(−)(ε, t)E(+)(ε, t)〉〈E(−)(ε, t + τ)E(+)(ε, t + τ)〉
+ 〈E(−)(ε, t)E(+)(ε, t + τ)〉〈E(−)(ε, t + τ)E(+)(ε, t)〉 . (3.60)
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For fields with no phase-dependent fluctuations the first term may be neglected.
Then

G(2)(τ) = G(1)(0)2 + |G(1)(τ)|2 . (3.61)

Hence the normalized second-order correlation function is

g(2)(τ) = 1 + |g(1)(τ)|2 . (3.62)

Now G(1)(τ) is the Fourier transform of the spectrum of the field

S(ω) =
∞∫
−∞

dτ e−iωτ G(1)(τ) . (3.63)

Hence for a field with a Lorentzian spectrum

g(2)(τ) = 1 + e−γτ (3.64)

and for a field with a Gaussian spectrum

g(2)(τ) = 1 + e−γ2τ2
, (3.65)

where γ is the spectral linewidth.
For a values of τ � τc the correlation time of the light, the correlation function

factorizes and g(2)(τ)→ 1. The increased value of g(2)(τ) for τ < τc for chaotic
light over coherent light [g(2)(0)chaotic = 2g(2)(0)coh] is due to the increased inten-
sity fluctuations in the chaotic light field. There is a high probability that the photon
which triggers the counter occurs during a high intensity fluctuation and hence a
high probability that a second photon will be detected arbitrarily soon. This ef-
fect known as photon bunching was first detected by Hanbury-Brown and Twiss.
Later experiments [8] showed excellent agreement with the theoretical predictions
for chaotic and coherent light (Fig. 3.2). We note that the above analysis does not
rely on any quantisation of the electromagnetic field but may be deduced from a
purely classical analysis of the electromagnetic field with fluctuating amplitudes for
the modes.

Measurement of the second-order correlation function of light with Gaussian
statistics has formed the basis of photon correlation spectroscopy [9]. Photon cor-
relation spectroscopy may be used to measure very narrow linewidths (1–108 Hz)
which are outside the range of conventional spectrometers. The second-order cor-
relation function g2(τ) is measured using electronic correlators and the linewidth
extracted using (3.64 or 3.65). This has found application, for example, in the mea-
surement of the diffusion coefficient of macromolecules where the scattered light
has Gaussian statistics. The linewidth of the scattered light contains information on
the diffusion coefficient of the macromolecule. This technique has been applied to
determine the size of biological molecules such as viruses as well as in studying
turbulent flows.
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Fig. 3.2 Measured photo-count statistics for (a) Gaussian, laser and superposed fields. Measuring
time of a single sample: 10μs. Coherence time of the Gaussian field; 40μs. (b) Two laser fields.
Measuring time of a single sample: 10μs

3.7 Quantum Mechanical Fields

We shall now evaluate the second-order correlation function for some quantum-
mechanical fields. We shall restrict our attention to a single-mode field and calculate
g(2)(0) and the variance in the photon number V (n)

g(2)(0) =
〈a†a†aa〉
〈a†a〉2 = 1 +

V (n)− n̄
n̄2 , (3.66)

where V (n) = 〈(a†a)2〉− 〈a†a〉2.
Coherent State

For a coherent state
ρ = |α〉〈α|, g(2)(0) = 1 (3.67)

and V (n) = n̄ for a Poisson distribution in photon number.
Number state

ρ = |n〉〈n|, g(2)(0) = 1− 1
n
, n > 2 . (3.68)

A number state has zero variance in the photon number (V (n) = 0). If g(2)(τ) <
g(2)(0) there is a tendency for photons to arrive in pairs. This situation is referred to
as photon bunching. The converse situation, g(2)(τ) > g(2)(0) is called antibunch-
ing. As noted above, however, g(2)(τ)→ 1 on a sufficiently long time scale. Thus
a field for which g(2)(0) < 1 will always exhibit antibunching on some time scale.
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A value of g(2)(0) less than unity could not have been predicted by a classical anal-
ysis. Equation (3.59) always predicts g(2)(0) ≥ 1. To obtain a g(2)(0) < 1 would
require the field to have elements of negative probability, which is forbidden for a
true probability distribution. This effect known as photon antibunching is a feature
peculiar to the quantum mechanical nature of the electromagnetic field.

A distinction should be maintained between photon antibunching and sub-
Poissonian statistics, although the two phenomena are closely related. For Poisson
statistics the variance of the photon number is equal to the mean. Thus a measure
of sub-Poissonian statistics is provided by the quantity V (N)−〈N〉. For a stationary
field one may show that [10].

V (N)−〈N〉= 〈N〉
2

T 2

∫ T

−T
dτ(T −|τ|)[g(2)(τ)−1] , (3.69)

where T is the counting time interval. If g(2)(τ) = 1 the field exhibits Poisson statis-
tics. Certainly a field for which g(2)(τ) < 1 for all τ will exhibit sub-Poissonian
statistics. However, it is possible to specify fields for which g(2)(τ) > g(2)(0) but
which exhibit super-Poissonian statistics over some time interval.

3.7.1 Squeezed State

We consider a squeezed state |α,r〉 with r defined as positive (Fig. 3.3). We align
our axes such that the X1 direction is parallel to the minor axis of the error ellipse.
The direction (1) is referred to as the direction of squeezing and the direction (2)
as the direction of coherent excitation. We then define α by 2α = 〈X1〉+ i〈X2〉 with
θ = tan−1 (〈X2〉/〈X1〉). The variance in the photon number for this squeezed state is

V (n)− n̄
n̄2 =

|α|2(cosh 2r− sinh 2r cos2θ −1)+ sinh2 r cosh 2r

(|α|2 + sinh2 r)2
. (3.70)

Fig. 3.3 A phase convention
for squeezed states. Direction
1 is the direction of squeezing,
direction 2 is the direction of
coherent excitation. The error
ellipse is aligned so that the
squeezing direction is parallel
to the X1 direction
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When θ = π/2, that is the squeezing is out of phase with the complex amplitude

V (n) = |α|2e2r + 2sinh2 r cosh2 r . (3.71)

Thus this state with increased amplitude fluctuations has super-Poissonian statistics
as expected.

When θ = 0, that is the squeezing is in phase with the complex amplitude

V (n) = |α|2e−2r + 2sinh2 r cosh2 r . (3.72)

The first term corresponds to the reduction in number fluctuations in the original
Poisson distribution. The second term is due to the fluctuations of the additional
photons in the squeezed vacuum.

When |α|2 � 2sinh2 r cosh2 r this is an amplitude squeezed state with sub-
Poissonian photon statistics. The maximum reduction in photon number fluctua-
tions one can get in an amplitude squeezed state may be estimated as follows:
For r ≥ 1

V (n)≈ |α|2e−2r +
1
8

e4r . (3.73)

The minimum value of V (n) occurs for e6r = 4|α|2 which corresponds to Vmin(n)≈
0.94|α|4/3. Diagrams depicting squeezed states with reduced amplitude and reduced
phase fluctuations are shown in Fig. 3.4.

In Chap. 5 we will discuss a nonlinear interaction which produces a state with
Poisson distribution in photon number, but can also exhibit amplitude squeezing.

Fig. 3.4 Phase-space of amplitude and phase squeezed states. (a) The quadrature carrying the co-
herent excitation is squeezed (θ = 0). (b) The quadrature out of phase with the coherent excitation
is squeezed (θ = π/2)
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3.7.2 Squeezed Vacuum

For a squeezed vacuum α = 0

V (n) = n̄(1 + cosh2r) . (3.74)

Hence a squeezed vacuum always exhibits super-Poissonian statistics.
We may compare the characteristics of a squeezed state with that of a number

state. A number state has reduced photon number fluctuations but has complete
uncertainty in phase. Thus a number state will not show any squeezing. For a num-
ber state

ΔX2
1 = ΔX2

2 = 2n + 1 . (3.75)

A number state may be represented in an (X1,X2) phase space plot as an annulus
with radius

√
n and width = 1.

3.8 Phase-Dependent Correlation Functions

The even-ordered correlation functions such as the second-order correlation func-
tion G(n,n)(x) contain no phase information and are a measure of the fluctuations in
the photon number. The odd-ordered correlation functions G(n,m) (x1 . . .xn,xn+1 . . .
xn+m) with n �= m will contain information about the phase fluctuations of the elec-
tromagnetic field. The variances in the quadrature phases ΔX2

1 and ΔX2
2 are given by

measurements of this type. A number of schemes to make quadrature phase mea-
surements have been discussed by Yuen and Shapiro [11].

These schemes involve homodyning the signal field with a reference signal
known as the local oscillator before photodetection. Homodyning with a reference
signal of fixed phase gives the phase sensitivity necessary to yield the quadrature
variances.

Consider two fields E1(r,t) and E2(r,t) of the same frequency, combined on a
beam splitter with transmittivity η , as shown in Fig. 3.5. This configuration is essen-
tially identical to the single field quadrature homodyne detection scheme discussed
by Yuen and Shapiro.

Fig. 3.5 Schematic represen-
tation of homodyne detection
of squeezed states
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We expand the two incident fields into the usual positive and negative frequency
components

E1(r, t) = i

(
�ω

2Vε0

)1/2

(aei(k·r−ωt)−a†e−i(k·r−ωt)) , (3.76)

E2(r, t) = i

(
�ω

2Vε0

)1/2

(bei(k·r−ωt)−b†e−i(k·r−ωt)) , (3.77)

where a,b are boson operators which characterise the two modes E1 and E2, respec-
tively. Both fields are taken to have the same sense of polarization, and are phase
locked.

The total field after combination is given by

ET (r, t) = i

(
�ω

2Vε0

)1/2

(cei(k·r−ωt)− c†e−i(k·r−ωt)) , (3.78)

where
c =
√

ηa+ i
√

1−ηb . (3.79)

We have included a 90◦ phase shift between the reflected and transmitted beams at
the beam splitter.

The photon detector, of course, responds to the moments of c†c. We thus define
the number operator N̂ = c†c.

The mean photo-electron current in the detector is proportional to 〈c†c〉 which is
given by

〈c†c〉= η〈a†a〉+(1−η)〈b†b〉− i
√

η(1−η)(〈a〉〈b†〉− 〈a†〉〈b〉) . (3.80)

Let us take the field E2 to be the local oscillator and assume it to be in a coherent
state of large amplitude β . Then we may neglect the first term in (3.80) and write
〈c†c〉 in the form

〈c†c〉 ≈ (1−η)|β |2 + |β |
√

η(1−η)〈Xθ+π/2〉 , (3.81)

where
Xθ ≡ ae−iθ + a†eiθ , (3.82)

and θ is the phase of β . We see that when the contribution from the reflected local-
oscillator intensity level is subtracted, the mean photo-current in the detector is pro-
portional to the mean quadrature phase amplitude of the signal field defined with
respect to the local oscillator phase. If we change θ through π/2 we can determine
the mean amplitude of the two canonically conjugate quadrature phase operators.

We now turn to a consideration of the fluctuations in the photo-current. The rms
fluctuation current is determined by the variance of c†c. For an intense local oscil-
lator in a coherent state this variance is

V (nc)≈ (1−η)2|β |2 + |β |2η(1−η)V(xθ+π/2) . (3.83)
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The first term here represents reflected local oscillator intensity fluctuations. If this
term is subtracted out, the photo-current fluctuations are determined by the variances
in Xθ+π/2, the measured quadrature phase operator. To subtract out the contribution
of the reflected local oscillator field balanced homodyne detection may be used. In
this scheme the output from both ports of the beam splitter is directed to a pho-
todetector and the resulting currents combined with appropriate phase shifts before
subsequent analysis. Balanced homodyne detection realises a direct measurement
of the signal field quadrature phase operators [11]. Alternatively, the contribution
from the local oscillator intensity fluctuations may be reduced by making the trans-
mittivity η ≈ 1, in which case the dominant contribution to V (nc) comes from the
second term in (3.83).

3.9 Photon Counting Measurements

3.9.1 Classical Theory

Consider radiation of intensity I(t) falling on a photo-electric counter. The proba-
bility that a count occurs in a time dt is given by

Δp(t) = αI(t)dt . (3.84)

The parameter α is a measure of the sensitivity of the detector, and depends on the
area of the detector and the spectral range of the incident light. Suppose initially
there are no random fluctuations in the intensity I(t). Now 1−Δp(t ′) represents the
probability that no counts occur in the time interval dt ′ at t ′. Then assuming the
independence of photocounts in different time intervals the joint probability that no
counts occur in an entire interval t to t + T is given by the product

t+T

∏
t

[1−Δp(t ′)]≈
t+T

∏
t

exp[−Δp(t ′)]

= exp

[
−

t+T

∑
t

Δp(t ′)

]

= exp

⎡
⎣−

t+T∫
t

dp(t ′)

⎤
⎦ . (3.85)

Thus the probability for no counts in the interval t to t + T is

P0(T + t,t) = exp

⎡
⎣−α

t+T∫
t

I(t ′)dt ′
⎤
⎦ . (3.86)
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The probability P1(T + t,t) that one count occurs between t and t + T is

∑
t′′

dp(t ′′)
t+T

∏
t

[1−Δp(t ′)]→
t+T∫
t

dp(t ′′)exp

⎡
⎣−

t+T∫
t

dp(t ′)

⎤
⎦ . (3.87)

Hence

P1(T + t, t) =

⎡
⎣α

t+T∫
t

I(t ′)dt ′
⎤
⎦exp

[
−α

∫ t+T

t
I(t ′)dt ′

]
. (3.88)

Following this reasoning the probability for n counts in the interval t to t + T is

Pn(t, T ) =
1
n!

[αT Ī(t, T )]n exp[−αT Ī(t, T )] , (3.89)

where

Ī(t, T ) =
1
T

t+T∫
t

I(t ′)dt ′

is the mean intensity during the counting interval.
Now since Ī(t,T ) may vary from one counting interval to the next, Pn(T ) is a

time average of Pn(t,T ) over a large number of different starting times

Pn(T ) = 〈Pn(t,T )〉

=
〈

[αĪ(t, T )T ]n

n!
exp[−αĪ(t, T )T ]

〉
. (3.90)

This formula was first derived by Mandel [12].
We note a useful generating function for the photon-counting distribution is

Q(λ , T ) =
∞

∑
n=0

(1−λ )nPn(T ) . (3.91)

The factorial moments of the photon counting distribution may be obtained as
follows:

n(n−1) . . .(n− k) =
∞

∑
n=0

n(n−1) . . .(n− k)Pn(T )

= (−1)k ∂ k

∂λ k Q(λ , T )
∣∣∣∣
λ=0

. (3.92)

We shall now consider some important cases of the photon counting formula (3.89).
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3.9.2 Constant Intensity

In the simplest case of a constant intensity Ī(t,T ) is independent of t and T , hence

Ī(t, T ) = I . (3.93)

In this case the averaging over a fluctuating intensity I(t) is unnecessary and

Pn(T ) =
n̄n

n!
exp(−n̄) , (3.94)

where
n̄ = αIT .

This is a Poisson distribution for which the variance V (n) = n̄.

3.9.3 Fluctuating Intensity–Short-Time Limit

When the intensity is fluctuating, (3.89) can be simplified in the limit where the
counting time T is short compared to the coherence time τc over which the intensity
changes. If, during the interval T, I(t) remains reasonably constant then

Ī(t,T ) = Ī(t) . (3.95)

With ergodic hypothesis for a stationary light source we may convert the time
average in (3.90) into an ensemble average over the distribution p(Ī(t)).

The photon counting formula may then be written

Pn(T ) =
∞∫

0

[αĪ(t)T ]n

n!
e−αI(t)T p(Ī(t))dĪ(t) . (3.96)

In the following we replace Ī(t) by the stochastic variable I for ease of notation.
The mean photon count is

n̄ =
∞

∑
n=0

nPn(T ) =
∞∫

0

∞

∑
n=0

n
(αIT )n

n!
e−αIT p(I)dI

=
∞∫

0

αT Ip(I)dI = αT 〈I〉 . (3.97)

Defining moments of intensity as

〈In〉=
∞∫

0

In p(I)dI , (3.98)
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we find for the mean square count

n2 =
∞

∑
n=0

n2Pn(T ) =
∞∫

0

(α2T 2I2 + αT I)p(I)dI

= α2T 2〈I2〉+ αT 〈I〉 . (3.99)

Thus the variance is

V (n) = n2− n̄2 = αT 〈I〉+ α2T 2(〈I2〉− 〈I〉2) . (3.100)

We note that this is always greater than the mean unless p(I) is a Dirac delta function
δ (I− I0). This is true for classical fields. For certain quantum mechanical fields we
shall see that it is possible to obtain V (n) < n̄.

A thermal light field has the following probability distribution for its intensity

p(I) =
1
I0

exp

(−I
I0

)
, (3.101)

with moments
〈In〉= n!In

0 .

The mean and variance of the photocount distribution are

n̄ = αTI0, V (n) = n̄(1 + n̄) . (3.102)

The photon-counting distribution is

Pn(T ) =
(αT )n

I0n!

∞∫
0

In exp

[
−I

(
αT +

1
I0

)]
dI

=
(αT )n

I0n!

(
αT +

1
I0

)−(n+1) ∞∫
0

xne−xdx n!

=
1

(1 + n̄)

(
n̄

1 + n̄

)n

. (3.103)

This power-law distribution for thermal light has been verified in photon-counting
experiments. Experiments have also shown that the photon count distribution of
highly stabilized lasers is approximated by a Poisson distribution [8, 13].

We conclude with a comment on the form assumed by Ī(t,T ) if the depletion of
the signal field by the detection process is taken into account. Then

I(t) = I0e−λ t , (3.104)

where λ is the rate of photon absorption. Then
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Ī(t, T ) =
I0

T

t+T∫
t

e−λ t′ dt ′ , (3.105)

Thus

Ī(τ, T ) =
I(t)
λ T

(1− e−λ T) . (3.106)

We note that for short counting times this has the same form as (3.95).

3.10 Quantum Mechanical Photon Count Distribution

The photon count distribution for a quantum mechanical field may be written in a
formally similar way to the classical expression [14]

Pn(T ) =
〈

:
[αĪ(T )T ]n

n!
exp[−αĪ(T )T ] :

〉
(3.107)

where

Ī(T ) =
1
T

T∫
0

I(t)dt

=
1
T

T∫
0

E(−)(r, t)E(+)(r, t) dt (3.108)

and : : denotes normal ordering of the operators. We shall demonstrate the use of
this formula for a single-mode field, in which case (3.107) may be written as

Pn(T ) = Tr

(
ρ :

[μ(T )a†a]n

n!
exp[−a†aμ(T )] :

)
(3.109)

where μ(T ) is the probability for detecting one photon in time T from a one photon
field. The explicit form of μ(T ) depends on the physical situation, e.g., μ(T ) = λ T
for an open system and μ(T ) = (1− e−λ T) for a closed system.

The photon count distribution may be related to the diagonal matrix elements
Pn = 〈n|ρ |n〉 of ρ by

Pm(T ) = ∑
n

Pn
[μ(T )]m

m!

〈
n

∣∣∣∣∣
∞

∑
l=0

μ(T )l

l!
a†m+lam+l

∣∣∣∣∣n
〉

. (3.110)

This gives

Pm(T ) =
∞

∑
n=m

Pn

n−m

∑
l=0

(−1)l μ(T )l

l!
n!

(n−m− l)!
. (3.111)
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The l summation is equivalent to a binomial expansion and we may write [15]

Pm(T ) =
∞

∑
n=m

Pn

(
n
m

)
[μ(T )]m[1− μ(T)]n−m (3.112)

where (
n
m

)
=

n!
m!(n−m)!

.

This distribution is known as the Bernoulli distribution.
The photo-count distribution Pn(T ) is only the same as Pn in the case of unit

quantum efficiency
Pm(T ) = Pm, μ(T ) = 1 . (3.113)

In practice, quantum efficiencies are less than unity and the photon-count distri-
bution is only indirectly related to Pn.

The following results may be proved:

3.10.1 Coherent Light

Pn =
n̄n

n!
exp(−n̄) , (3.114)

Pm(T ) =
[μ(T )n̄]m

m!
exp[−μ(T )n̄] . (3.115)

3.10.2 Chaotic Light

Pn =
(n̄)n

(1 + n̄)1+n , (3.116)

Pm(T ) =
[μ(T )n̄]m

[1 + μ(T)n̄]1+m . (3.117)

These results agree with those obtained by semiclassical methods, see (3.94 and
3.103). In these cases Pn and Pm(T ) have the same mathematical form with the
mean number m̄ of counted photons related to the mean number n̄ of photons in the
mode by m̄ = μ(T )n̄. No such simple relation holds in general.

For example, for a photon number state, Pn is a delta function δnn0 but the photo-
count distribution Pm(T ) is non zero for all m≤ n0. However the normalized second
order factorial moments are the same in all cases.

For a single-mode field

∑m(m−1)
Pm(T )

m̄2 = ∑
n

(n−1)
Pn

n̄2 = g(2)(0) . (3.118)



52 3 Coherence Properties of the Electromagnetic Field

Thus the second-order correlation function g(2)(0) is directly obtainable from the
photo-count distribution without any dependence on the quantum efficiency μ(T ).
For a multimode field a more complicated relation holds.

3.10.3 Photo-Electron Current Fluctuations

We now consider how the photon number statistics determines the statistics of the
observed photo-electron current. Each individual photon detection produces a small
current pulse, the observed current over a counting interval from t−T to t is then
due to the accumulated electrical pulses over this interval. Thus we write

i(t) =
t∫

t−T

F(t ′)dn(t ′) . (3.119)

Here F(t ′) is a response function which determines the current resulting from each
photon detection event. We assume F(t ′) is flat, i.e. independent of t,

F(t ′) =
Ge
T

, (3.120)

where e is the electronic charge and G is a gain factor. Then the photo-electron
current is given by

i(t) =
Ge
T

n , (3.121)

where n is the total number of photon detection events over the counting interval.
The mean current is then given by

i(t) =
Ge
T

∞

∑
n=0

nPn(T ; t) , (3.122)

where Pn(T,t) is given by (3.89) with

Ī(t, T ) =
1
T

t∫
t−T

dt ′ E(−)(t ′)E(+)(t ′) . (3.123)

Thus
i(t) = (αGe)〈: Ī(t, T ) :〉 . (3.124)

The current power spectrum is directly related to the statistical properties of the
current by

S(ω) =
1
π

∞∫
0

dτ cos (ωt) i(0)i(τ) . (3.125)
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The two-time correlation function is determined by joint emission probabilities for
photo-electrons which are generalisations of the single photon result in (3.84). Ex-
plicit expressions were given by Carmichael [16]. The result is, with the definitions
of (3.120).

i(0)i(τ) = (αGe)2[〈: Ī(T, 0)Ī(T, τ) :〉+ θ (T − τ)〈: Ī(τ−T, 0) :〉] (3.126)

where θ (x) is zero for x ≤ 0 and unity otherwise. For multiple time correlations
:: also signifies time ordering (time arguments increasing to the left in products of
annihilation operators). In the case of constant intensity

i(0)i(τ) =(αζ Ge)2[〈a†(0)a†(τ)a(τ)a(0)〉]

+ (Ge)2αζ
[

θ (T − τ)
(T − τ)

T 2 〈a†(0)a(0)〉
]

(3.127)

where ζ is a scale factor that converts the intensity operator into a photon-flux op-
erator. For plane waves it is given by

ζ =
ε0 cA
�ωc

(3.128)

where A is the transverse area of the field over which the field is measured, and ωc

the frequency of the field. Using the following result for the delta function

∞∫
0

dt ′ f (t ′)δ (t ′) =
1
2

f (0) , (3.129)

one may show that

lim
T→0

θ (T − t)
T 2 (T − t) = δ (t) . (3.130)

Then in the limit of broad-band detector response (T → 0)

i(0)i(τ) = (αGeζ )2〈a†(0)a†(τ)a(τ)a(0)〉+ αζ (Ge)2〈a†(0)a(0)〉δ(τ) (3.131)

The last term in this expression is the shot noise contribution to the current.
It is more convenient to write this expression directly in terms of the normally-

ordered correlation function

〈: I(0), I(τ) :〉 ≡ ζ 2[〈a†(0)a†(τ)a(τ)a(0)〉− 〈a†(0)a(0)〉2] . (3.132)

Then

i(0)i(τ) = (αGeζ )2〈a†(0)a(0)〉2 + αζ (Ge)2〈a†(0)a(0)〉δ(τ)

+ (αGe)2〈: I(0), I(τ) :〉 . (3.133)
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The first term is a DC term and does not contribute to the spectrum. The second
term is the shot-noise contribution. The final term represents intensity fluctuations,
which for a coherent field is zero.

Exercises

3.1 Calculate the mean intensity at the screen when the two slits of a Young’s
interference experiment are illuminated by the two photon state (b†)2|0〉/√2
where b = (a1 +a2)/

√
2 and ai is the annihilation operator for the mode radi-

ated by slit i.
3.2 In balanced homodyne detection the measured photocurrent is determined by

the moments of the photon number difference at the two output ports of the
beam splitter. Show that the variance of the photon-number difference for a
50/50 beam splitter is

V (n−) = |β |2V (Xθ+π/2)

where |β |2 is the intensity of the local oscillator. Thus the local oscillator
intensity fluctuations do not contribute.

3.3 Show that the probability to detect m photons with unit quantum efficiency
in a field which has been transmitted by a beam splitter of transmitivity μ , is
given by

Pm(μ) =
∞

∑
n=m

Pn

(
n
m

)
μm(1− μ)n−m

where Pn is the photon number distribution for the field before passing through
the beam splitter.

3.4 A beam splitter transforms incoming mode operators ai, bi to the outgoing
operators a0, b0 where

a0 =
√

ηai− i
√

1−ηbi, b0 =
√

ηbi− i
√

1−ηai .

(a) Show that such a transformation may be generated by the unitary operator

T = exp[−iθ (a†b + ab†)], η = cos2 Θ .

(b) Thus show that if the incoming state is a coherent state |αi〉 ⊗ |βi〉, the
outgoing state is also a coherent state with

α0 =
√

ηαi− i
√

1−ηβi, β0 =
√

ηβi− i
√

1−ηαi .

(c) Show that, if the incoming state is the product number state |1〉⊗ |1〉, the
outgoing state is
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(2η−1)|1〉|1〉+ i
√

2η(1−η)(|2〉|0〉+ |0〉|2〉).

Note that when η = 1/2 the ‘coincidence’ term |1〉|1〉 does not appear, a result
known as Hong-Ou-Mandel interference.
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Chapter 4
Representations of the Electromagnetic Field

Abstract A full description of the electromagnetic field requires a quantum
statistical treatment. The electromagnetic field has an infinite number of modes and
each mode requires a statistical description in terms of its allowed quantum states.
However, as the modes are described by independent Hilbert spaces, we may form
the statistical description of the entire field as the product of the distribution function
for each mode. This enables us to confine our description to a single mode without
loss of generality.

In this chapter we introduce a number of possible representations for the density
operator of the electromagnetic field. One representation is to expand the density
operator in terms of the number states. Alternatively the coherent states allow a
number of possible representations via the P function, the Wigner function and the
Q function.

4.1 Expansion in Number States

The number or Fock states form a complete set, hence a general expansion of ρ is

ρ = ∑Cnm|n〉〈m| . (4.1)

The expansion coefficients Cnm are complex and there is an infinite number of them.
This makes the general expansion rather less useful, particularly for problems where
the phase-dependent properties of the electromagnetic field are important and hence
the full expansion is necessary. However, in certain cases where only the photon
number distribution is of interest the reduced expansion

ρ = ∑Pn|n〉〈n| , (4.2)

may be used. Here Pn is a probability distribution giving the probability of having
n photons in the mode. This is not a general representation for all fields but may
prove useful for certain fields. For example, a chaotic field, which has no phase
information, has the distribution

57
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Pn =
1

(1 + n̄)

(
n̄

1 + n̄

)n

, (4.3)

where n̄ is the mean number of photons. This is derived by maximising the entropy

S =−TR{ρ lnρ} , (4.4)

subject to the constraint Tr{ρa†a} = n̄, and is just the usual Planck distribution for
black-body radiation with

n̄ =
1

eh̄ω/kT −1
. (4.5)

The second-order correlation function g2(0) may be written according to (3.66)

g2(0) = 1 +
V (n)− n̄

n̄2 , (4.6)

where V (n) is the variance of the distribution function Pn. Hence, for the power-law
distribution V (n) = n̄2 + n̄ we find g(2)(0) = 2. For a field with a Poisson distribution
of photons

Pn =
e−n̄

n!
n̄n (4.7)

the variance V (n) = n̄, hence g(2)(0) = 1.
A coherent state has a Poisson distribution of photons. However, a measurement

of g(2)(0) would not distinguish between a coherent state and a field prepared from
an incoherent mixture with a Poisson distribution. In order to distinguish between
these two fields a phase-dependent measurement such as a measurement of ΔX1,
ΔX2 would need to be made.

4.2 Expansion in Coherent States

4.2.1 P Representation

The coherent states |α〉 form a complete set of states, in fact, an overcomplete set
of states. They may therefore be used as a basis set despite the fact that they are
non-orthogonal. The following diagonal representation in terms of coherent states
was introduced independently by Glauber [1] and Sudarshan [2]

ρ =
∫

P(α)|α〉〈α|d2α , (4.8)

where d2α = d(Re{α})d(Im{α}). It has found wide-spread application in quantum
optics.

Now it might be imagined that the function P(α) is analogous to a probability
distribution for the values of α . However, in general this is not the case since the
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projection operator |α〉〈α| is onto non-orthogonal states, and hence P(α) cannot
be interpreted as a genuine probability distribution. We may note that the coher-
ent states |α〉 and |α ′〉 are approximately orthogonal for |α −α ′| � 1, see (2.41).
Hence, if P(α) is slowly varying over such large ranges of the parameter there is an
approximate sense in which P(α) may be interpreted with a classical description.
There are, however, certain quantum states of the radiation field where P(α) may
take on negative values or become highly singular. For these fields there is no clas-
sical description and P(α) clearly cannot be interpreted as a classical probability
distribution. Let us now consider examples of fields which may be described by the
P representation:

(i) Coherent state

If
ρ = |α0〉〈α0| , (4.9)

then
P(α) = δ (2)(α−α0) . (4.10)

(ii) Chaotic state

For a chaotic state it follows from the central limit theorem that P(α) is a
Gaussian

P(α) =
1

πn̄
e−|α |

2/n̄ . (4.11)

That this is equivalent to the result for Pn is clear if we take matrix elements

Pn = 〈n|ρ |n〉=
∫

P(α)|〈n|α〉|2d2α =
1

πn̄

∫
e−|α |

2/n̄ |α|2n

n!
e−|α |

2
d2α . (4.12)

Using the identity

π−1(l!m!)−1/2
∫

exp(−C|α|2)α l(α∗)md2α = δlmC−(m+1) , (4.13)

which holds for C > 0 and choosing

C =
1 + n̄

n̄

we find

Pn =
1

1 + n̄

(
n̄

1 + n̄

)n

. (4.14)

For a mixture of a coherent and a chaotic state the P function is

P(α) =
1

πn̄
e−|α−α0|2/n̄ , (4.15)

which may be derived using the following convolution property of P(α). Consider
a field produced by two independent sources. The first source acting constructs
the field
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ρ1 =
∫

P1(α1)|α1〉〈α1|d2α1 . (4.16)

Acting alone the second source would produce the field

ρ2 =
∫

P2(α2)|α2〉〈α2|d2α2 =
∫

P2(α2)D(α2)|0〉〈0|D−1(α2)d2α2 . (4.17)

The second source acting after the first field generates the field

ρ =
∫

P2(α2)D(α2)ρ1D−1(α2)d2α2

=
∫

P2(α2)P1(α1)|α1 + α2〉〈α1 + α2|d2α1 d2α2 . (4.18)

The weight function P(α) for the superposed excitations is therefore

P(α) =
∫

δ 2(α−α1−α2)P1(α1)P2(α2)d2α1 d2α2

=
∫

P1(α−α ′)P2(α ′)d2α ′ . (4.19)

We see that the distribution function for the superposition of two fields is the con-
volution of the distribution functions for each field.

a) Correlation Functions

The P(α) representation is convenient for evaluating normally-ordered products of
operators, for example

〈a†nam〉=
∫

P(α)α∗nαmd2α . (4.20)

This reduces the taking of quantum mechanical expectation values to a form similar
to classical averaging.

Let us express the second-order correlation function in terms of P(α)

g(2)(0) = 1 +
∫

P(α)[(|α|2)−〈|α|2〉]2 d2α
[
∫

P(α)|α|2 d2α]2
. (4.21)

This looks functionally identical to the expression for classical fields. However, the
argument that g(2)(0) must be greater than or equal to unity no longer holds since
for certain fields as we have mentioned P(α) may take on negative values and allow
for a g(2)(0) < 1, that is, photon antibunching.

A similar result may be derived for the squeezing. We may write the variances in
X1 and X2 as

ΔX2
1 = {1 +

∫
P(α)[(α + α∗)− (〈α〉+ 〈α∗〉)]2 d2α},

ΔX2
2 =

{
1 +

∫
P(α)

[(
α−α∗

i

)
−
(〈α〉− 〈α∗〉

i

)]2

d2α

}
. (4.22)



4.2 Expansion in Coherent States 61

The condition for squeezing ΔX2
1 < 1, requires that P(α) takes on a negative value

along either the real or imaginary axis in the complex plane, but not both simulta-
neously. Thus squeezing and antibunching are phenomena which are the exclusive
property of quantum fields and may not be generated by classical fields. Some am-
biguity may arise in the case of squeezing which only has significance for quantum
fields. If a classical field is assumed from the outset arbitrary squeezing may occur
in either quadrature or both simultaneously.

Quantised fields for which P(α) is a positive function do not exhibit quantum
properties such as photon antibunching and squeezing. Such fields may be simulated
by a classical description which treats the complex field amplitude ε as a stochastic
random variable with the probability distribution P(ε) and hence may be considered
as quasiclassical. Coherent and chaotic fields are familiar examples of fields with a
positive P representation. Quantum fields exhibiting antibunching and/or squeezing
cannot be described in classical terms. For such fields the P representation may be
negative and highly singular. The coherent state has a P representation which is a
delta function, defining the boundary between quantum and classical behaviour. For
fields exhibiting quantum behaviour such as a number state |n〉 or squeezed state
|α,ε〉 no representation for P(α) in terms of tempered distributions exists. Though
representations in terms of generalised functions do exist [3], such representations
are highly singular, for example, derivatives of delta functions. We shall therefore
look for alternative representations to describe such quantum fields.

b) Covariance Matrix

Gaussian processes which arise, for example, in linearized fluctuation theory may
be characterized by a covariance matrix. A covariance matrix may be defined by

C(a,a†) =
( 〈a2〉− 〈a〉2 1

2〈aa† + a†a〉− 〈a†〉〈a〉
1
2 〈aa† + a†a〉− 〈a†〉〈a〉 〈a†2〉− 〈a†〉2

)
. (4.23)

One may also introduce a correlation matrix C(X1, X2) for the quadrature phase
operators X1 and X2:

C(X1,X2)p,q =
1
2
〈XpXq + XqXp〉− 〈Xp〉〈Xq〉 (p,q = 1,2) . (4.24)

These two correlation matrices are related by

C(X1,X2) = ΩC(a,a†)ΩT (4.25)

where

Ω =
(

1 1
−i i

)
.

The covariance matrix Cp(α, α∗) defined by the moments of α and α∗ over
P(α, α∗) is related to the covariance matrix C(a, a†) by

C(a,a†) = Cp(α,α∗)+
1
2

(
0 1
1 0

)
. (4.26)
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The distribution can be written in terms of the real variables

x1 = α + α∗, x2 =
1
i
(α−α∗)

for which the covariance matrix relation is

C(X1,X2) = Cp(x1,x2)+ I . (4.27)

c) Characteristic Function

In practice, it proves useful to evaluate the P function through a characteristic
function.

The density operator ρ is uniquely determined by its characteristic function

χ(η) = Tr{ρeηa†−η∗a} .

We may also define normally and antinormally ordered characteristic functions

χN(η) = Tr{ρeηa†
e−η∗a} , (4.28)

χA(η) = Tr{ρe−η∗aeηa†} . (4.29)

Using the relation (2.25) the characteristic functions are related by

χ(η) = χN(η)exp

(
−1

2
|η |2

)
. (4.30)

If the density operator ρ has a P representation, then χN(η) is given by

χN(η) =
∫
〈α|eηa†

e−η∗a|α〉P(α)d2α =
∫

eηα∗−η∗α P(α)d2α . (4.31)

Writing η and α in terms of their real and imaginary parts we find that (4.31) ex-
presses χN(η) as a two-dimensional Fourier transform of P(α). The solution for
P(α) is the inverse Fourier transform

P(α) =
1
π2

∫
eαη∗−α∗η χN(η)d2η . (4.32)

Thus the criterion for the existence of a P representation is the existence of a Fourier
transform for the normally-ordered characteristic function χN(η).

4.2.2 Wigner’s Phase-Space Density

The first quasi-probability distribution was introduced into quantum mechanics by
Wigner [4]. The Wigner function may be defined as the Fourier transform of the
symmetrically ordered characteristic function χ(η)
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W (α) =
1
π2

∫
exp(η∗α−ηα∗)χ(η)d2η . (4.33)

The Wigner distribution always exists but is not necessarily positive.
The relationship between the Wigner distribution and the P(α) distribution may

be obtained via the characteristic functions. Using (4.30) we may express the Wigner
function as

W (α) =
1
π2

∫
exp(η∗α−ηα∗)χN(η)e−1/2|η|2d2η

=
1
π2

∫
Tr{ρeη(a†−α∗)e−η∗(a−α)}e−1/2|η|2d2η

=
1
π2

∫
P(β )exp[η(β ∗ −α∗)−η∗(β −α)− 1

2
|η |2]d2η d2β . (4.34)

Substituting ε = η/
√

2 leads to

W (α) =
2
π2

∫
P(β )exp[

√
2ε(β ∗ −α∗)−

√
2ε∗(β −α)−|ε|2]d2ε d2β . (4.35)

The integral may be evaluated using the identity

1
π

∫
d2η exp(−λ |η |2 + μη + νη∗) =

1
λ

exp
(μν

λ

)
(4.36)

which holds for Re{λ}> 0 and arbitrary μ , ν . This gives

W (α) =
2
π

∫
P(β )exp(−2|β −α|2)d2β . (4.37)

That is, the Wigner function is a Gaussian convolution of the P function.
The covariance matrix Cw(α, α∗) defined by the moments of α and α∗ over

W (α, α∗) is related to the covariance matrix C(a, a†) defined by (4.23) by

C(a,a†) = Cw(α,α∗) . (4.38)

The error areas discussed in Chap. 2 may rigorously be derived as contours of
the Wigner function. We shall now study the Wigner functions for several states of
this radiation field and their corresponding contours.

As it is defined in (4.33) the Wigner function is normalised as∫
d2αW (α) = 1 (4.39)

We have defined the quadrature phase operators Xi as (2.56)

a =
1
2
(X1 + iX2) (4.40)

If we denote the eigenstates of Xi as |xi〉, we can write the Wigner function as a
function of xi using
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W (x1,x2) =
1
4

W (α)
∣∣α=(x1+ix2)/2 (4.41)

so that the marginal distributions of W ,

P(xk) =
∫ ∞

−∞
dxk̄W (x1,x2) (4.42)

are given by P(xi) = 〈xi|ρ |xi〉, where k̄ = k− (−1)k.
For certain states of the radiation field the Wigner function may be written in the

Gaussian form

W (x1,x2) = N exp

(
−1

2
Q

)
(4.43)

where Q is the quadratic form

Q = (x−a)T A−1(x−a) (4.44)

and N is the normalization. A contour of the Wigner function is the curve Q = 1.
We choose to work in the phase space where x1 and x2 are the c-number variables
corresponding to the quadrature phase amplitudes X1 and X2.

a) Coherent State

For a coherent state |α〉= | 12 (X1 + iX2)〉 the Wigner function is

W (x1,x2) =
1

2π
exp

[
−1

2
(x′21 + x′22 )

]
(4.45)

where x′i = xi−Xi. The contour of the Wigner function given by Q = 1 is

x′21 + x′22 = 1 . (4.46)

Thus the error area is a circle with radius 1 centred on the point (X1, X2)
(Fig. 2.1a).

b) Squeezed State

The Wigner function for a squeezed state is

W (x1,x2) =
1

2π
exp

[
−1

2
(x′21 e2r + x′22 e−2r)

]
. (4.47)

The contour of the Wigner function given by Q = 1 is

x′21
e−2r +

x′21
e2r = 1 (4.48)

which is an ellipse with the length of the major and minor axes given by er and e−r,
respectively (Fig. 2.1b).
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c) Number State

The Wigner function for a number state |n〉 is

W (x1,x2) =
2
π

(−1)nLn(4r2)e−2r2
(4.49)

where r2 = x2
1 + x2

2, and Ln(x) is the Laguerre polynomial. This Wigner function is
clearly negative.

The Wigner function gives direct symmetrically-ordered moments such as those
arising in the calculation of the variances of quadrature phases.

4.2.3 Q Function

An alternative function is the diagonal matrix elements of the density operator in a
pure coherent state

Q(α) =
〈α|ρ |α〉

π
≥ 0 . (4.50)

This is clearly a non-negative function since the density operator is a positive oper-
ator. It is also a bounded function

Q(α) <
1
π

.

Writing the distribution in terms of the real variables

x1 = α + α∗, x2 =−i(α−α∗)

the covariance matrix relation is

C(X1,X2) = CQ(x1,x2)− I .

The Q function may be expressed as the Fourier transform of the antinormally-
ordered characteristic function χA(η)

χA(η) = Tr{ρe−η∗aeηa†}=
∫

d2α
π
〈α|eηa†

ρe−η∗a|α〉=
∫

eηα∗−η∗α Q(α)d2α .

(4.51)
Thus Q(α) is the inverse Fourier transform

Q(α) =
1
π2

∫
eαη∗−α∗η χA(η)d2η . (4.52)

The relation between the P(α) and the Q(α) follows from

Q(α) =
〈α|ρ |α〉

π
=

1
π

∫
P(β )|〈α|β 〉|2d2β =

1
π

∫
P(β )e−|α−β |2d2β . (4.53)
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That is, the Q function like the Wigner function is a Gaussian convolution of the P
function. However, it is convoluted with a Gaussian which has

√
2 times the width

of the Wigner function which accounts for the rather more well-behaved properties.
The Q function is convenient for evaluating anti-normally-ordered moments

〈ana†m〉=
∫

αnα∗mQ(α,α∗)d2α . (4.54)

The covariance matrix CQ(α, α∗) defined by the moments of α and α∗ over
Q(α, α∗) is related to the covariance matrix C(a, a†) defined by (4.23) by

C(a,a†) = CQ(α,α∗)− 1
2

(
0 1
1 0

)
. (4.55)

The Q function has the advantage of existing for states where no P function ex-
ists and unlike the Wigner or P function is always positive. The Q functions for a
coherent state and a number state are easily obtained.

For a coherent state |β 〉 the Q function is

Q(α) =
|〈α|β 〉|2

π
=

e−|α−β |2

π
. (4.56)

For a number state |n〉 the Q function is

Q(α) =
|〈α|n〉|2

π
=
|α|2ne−|α |2

πn!
. (4.57)

The Q function for a squeezed state |α, r〉 is defined as

Q(β ,β ∗) =
1
π
|〈β |D(α)S(r)|0〉|2 . (4.58)

This is a multivariate Gaussian distribution and may be written in terms of the
quadrature phase variables x1 and x2 as

Q(x1,x2) =
1

4π2 coshr
exp

[
−1

2
(x−x0)TC−1(x−x0)

]
(4.59)

where

x0 = 2(Re{α}, Im{α}),
x = (x1,x2),

C =
(

e−2r + 1 0
0 e2r + 1

)
.

The Q function for a squeezed state is shown in Fig. 4.1.
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Fig. 4.1 Q function for a squeezed state with coherent amplitude α = 2.0, r = 1.0

4.2.4 R Representation

Any density operator ρ may be represented in a unique way by means of a function
of two complex variables R(α∗, β ) which is analytic throughout the finite α∗ and
β planes. The function R is given explicitly as

R(α∗,β ) = 〈α|ρ |β )exp[(|α|2 + |β |2)/2] . (4.60)

We may express the density operator in terms of R(α∗, β )

ρ =
1
π2

∫
|α〉R(α∗,β )〈β |e−(|α |2+|β |2)/2d2α d2β . (4.61)

The normalization condition
Tr{ρ}= 1

implies ∫
〈γ|α〉〈α|ρ |β 〉〈β |γ〉d

2α
π

d2β
π

d2γ
π

= 1 . (4.62)

Interchanging the scalar products and performing the integrations over β and γ we
arrive at the result

1
π

∫
〈α|ρ |α〉d2α = 1 (4.63)

which gives the normalization condition on R

1
π

∫
R(α∗,α)e−|α |

2
d2α = 1 . (4.64)

The function R(α∗, β ) is analytic in α∗ and β (and therefore non-singular) and
is by definition non-positive. It has a normalization that includes a Gaussian weight
factor. For these reasons it cannot have a Fokker–Planck equation or any direct in-
terpretation as a quasiprobability. Nevertheless, the existence of this representation
does demonstrate that a calculation of normally-ordered observables for any ρ is
possible with a non-singular representation.
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4.2.5 Generalized P Representations

Another representation which like the R representation uses an expansion in non-
diagonal coherent state projection operators was suggested by Drummond and
Gardiner [5]. The representation is defined as follows

ρ =
∫
D

Λ(α,β )P(α,β )dμ(α,β ) (4.65)

where

Λ(α,β ) =
|α〉〈β ∗|
〈β ∗|α〉

and dμ(α, β ) is the integration measure which may be chosen to define different
classes of possible representations and D is the domain of integration. The projection
operator Λ(α, β ) is analytic in α and β . It is clear that the normalization condition
on ρ leads to the following normalization condition on P(α, β )

∫
D

P(α,β )dμ(α,β ) = 1 . (4.66)

Thus, the P(α, β ) is normalisable and we shall see in Chap. 6 that it gives rise to
Fokker–Planck equations. The definition given by (4.65) leads to different represen-
tations depending on the integration measure.

Useful choices of integration measure are

1. Glauber–Sudarshan P Representation

dμ(α,β ) = δ 2(α∗ −β )d2α d2β . (4.67)

This measure corresponds to the diagonal Glauber–Sudarshan P representation de-
fined in (4.8).

2. Complex P Representation

dμ(α,β ) = dα dβ . (4.68)

Here (α, β ) are treated as complex variables which are to be integrated on individ-
ual contours C, C′. The conditions for the existence of this representation are dis-
cussed in the appendix. This particular representation may take on complex values
so in no sense can it have any physical interpretation as a probability distribution.
However, as we shall see it is an extremely useful representation giving exact results
for certain problems and physical observables such as all the single time correlation
functions.

We shall now give some examples of the complex P representation.
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(a) Coherent State |γ0〉
Consider a density operator with an expansion in coherent states as

ρ =
∫∫

DD′
ρ(α,β )|α〉〈β ∗|d2α d2β . (4.69)

Using the residue theorem

ρ =− 1
4π2

∫∫

DD′
ρ(α,β )〈β ∗|α〉

⎡
⎣∮ ∮

CC′

Λ(α ′,β ′)dα ′ dβ ′

(α−α ′)(β −β ′)

⎤
⎦d2α d2β . (4.70)

Exchanging the order of integration we see the complex P function is

P(α,β ) =− 1
4π2

∫∫

DD′
ρ(α ′,β ′)〈β ′∗|α ′〉 d2α ′d2β ′

(α−α ′)(β −β ′)
. (4.71)

Thus for a coherent state |γ0〉

P(α,β ) =− 1
4π2(α− γ0)(β − γ∗0)

. (4.72)

Examples of complex P functions for nonclassical fields where the Glauber–
Sudarshan P function would be highly singular are given below.

(b) Number State |n〉

P(α,β ) =− 1
4π2 eαβ n!

(αβ )n+1 . (4.73)

This may be proved as follows. Using

〈α|β 〉= eα∗β−|α |2/2−|β |2/2 (4.74)

and

|α〉= ∑ e−|α |2/2αn|n〉
n!1/2

, (4.75)

we may write ρ as

ρ =
∫

P(α,β )∑ |n′〉〈m′|
(n′!)1/2(m′!)1/2

e−αβ (αn′β m′)dα dβ . (4.76)

Substituting (4.73) for P(α, β )

ρ =− 1
4π2 ∑ (n!)2

(n′!)1/2(m′!)1/2

∫
α−(n+1−n′)β−(n+1−m′)|n′〉〈m′|dα dβ . (4.77)
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Choosing any contour of integration encircling the origin and using Cauchy’s
theorem

1
2πi

∮
dz zn = 0 if n≥ 0,

= 1 if n =−1,

= 0 if n <−1 . (4.78)

We find
ρ = |n〉〈n| .

(c) Squeezed State |γ, r〉
The complex P representation for a squeezed state is

P(α,β ) = N exp{(α− γ)(β − γ∗)+ cothr[(α − γ)2 +(β − γ∗)2]} . (4.79)

This may be normalized by integrating along the imaginary axis for r real. The
resulting normalization for this choice of contour is

N =− 1
2πsinhr

.

As an example of the use of the complex P representation we shall consider the
photon counting formula given by (3.107). Using the diagonal coherent-state repre-
sentation for ρ we may write the photon counting probability Pm(T ) as

Pm(T ) =
∫

d2zP(z)
(|z|2μ(T ))m

m!
exp[−|z|2μ(T )] . (4.80)

An appealing feature of this equation is that Pm(T ) is given by an averaged Poisson
distribution with P(z) in the role of a probability distribution over the complex field
amplitude. It is a close analogue of the classical expression (3.96). We know how-
ever that P(z) is not a true probability distribution and may take on negative values,
and this may cause some anxiety over the validity of (4.80). In such cases we may
consider a simple generalization of (4.80) by using the complex P representation for
ρ . The photocount probability is then given by

Pm(T ) =
∫

CC′
dz dz′ P(z,z′)

(zz′μ(T ))m

m!
exp[−zz′μ(T )] . (4.81)

We shall demonstrate the use of this formula to calculate Pm(T ) for states for which
no well behaved diagonal P distribution exists.

a) Number State

For a number state with density operator ρ = |n〉〈n| we have

P(z,z′) =− 1
4π2 exp(zz′)n!(zz′)−n−1 (4.82)
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and the contours C and C′ enclose the origin. Substituting (4.81) for m > n the
integrand contains no poles and Pm(T ) = 0, while for m < n poles of order n−m+1
contribute in each integration and we obtain the result of (3.112)

Pm(T ) =
∞

∑
n=m

(
n
m

)
[μ(T )]m[1− μ(T)]n−m . (4.83)

b) Squeezed State

For a squeezed state with density operator ρ = |γ, r〉〈γ, r| where γ and r are taken
to be real, we have

P(z,z′) =− 1
2π

(sinhr)−1 exp{(z− γ)(z′ − γ)+ cothr[(z− γ)2

+(z′ − γ)2]} (4.84)

and the contours C and C′ are along the imaginary axes in z and z′ space, respec-
tively. Performing the integration in (4.81) gives the formula, see (3.112),

Pm(T ) =
∞

∑
n=m

(
n
m

)
[μ(T )]m[1− μ(T)]n−mPn (4.85)

with

Pn = (n! coshr)−1 exp[−γ2e2r(1 + tanhr)](tanhr)nH2
n

(
γer

√
sinh2r

)

where the Hn(x) are Hermite polynomials. This agrees with the result of a deriva-
tion using the number state representation (3.109) when we recognise that Pn =
|〈n|γ, r〉|2.

4.2.6 Positive P Representation

The integration measure is chosen as

dμ(α,β ) = d2α d2β . (4.86)

This representation allows α, β to vary independently over the whole complex
plane. It was proved in [5] that P(α, β ) always exists for a physical density op-
erator and can always be chosen positive. For this reason we call it the posi-
tive P representation. P(α, β ) has all the mathematical properties of a genuine
probability. It may also have an interpretation as a probability distribution [6]. It
proves a most useful representation, in particular, for problems where the Fokker–
Planck equation in other representations may have a non-positive definite diffu-
sion matrix. It may be shown that provided any Fokker–Planck equation exists
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for the time development in the Glauber–Sudarshan representation, a corresponding
Fokker–Planck equation exists with a positive semidefinite diffusion coefficient for
the positive P representation.

Exercises

4.1 Show that if a field with the P representation Pi(α) is incident on a 50/50 beam
splitter the output field has a P representation given by P0(α) = 2Pi(

√
2α).

4.2 Show that the Wigner function may be written, in terms of the matrix elements
of ρ in the eigenstates of X1, as

W (x1,x2) =
1

2π

∫ ∞

−∞
dx e−ixx2〈x1 + x|ρ|x1− x〉

where x1 = α+ α∗ and x2 =−i(α−α∗).
4.3 The complex P representation for a number state |n〉 is

P(α,β ) =− 1
4π2 eαβ n!

(αβ )n+1 .

Show that
〈a†a〉=

∮
dα dβ αβ P(α, β ) = n .

4.4 Use the complex P representation for a squeezed state |γ, r〉 with γ and r both
real, to show that the photon number distribution for such a state is

Pn = (n! coshr)−1 exp[−γ2e2r(1 + tanhr)](tanhr)nH2
n

(
γer

√
sinh2r

)
.
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Chapter 5
Quantum Phenomena in Simple Systems
in Nonlinear Optics

Abstract In this chapter we will analyse some simple processes in nonlinear optics
where analytic solutions are possible. This will serve to illustrate how the formalism
developed in the preceding chapters may be applied. In addition, the simple exam-
ples chosen illustrate many of the quantum phenomena studied in more complex
systems in later chapters.

This chapter will serve as an introduction to how quantum phenomena such as
photon antibunching, squeezing and violation of certain classical inequalities may
occur in nonlinear optical systems. In addition, we include an introduction to quan-
tum limits to amplification.

5.1 Single-Mode Quantum Statistics

A single-mode field is the simplest example of a quantum field. However, a num-
ber of quantum features such as photon antibunching and squeezing may occur in a
single-mode field. To illustrate these phenomena we consider the degenerate para-
metric amplifier which displays interesting quantum behaviour.

5.1.1 Degenerate Parametric Amplifier

One of the simplest interactions in nonlinear optics is where a photon of frequency
2ω splits into two photons each with frequency ω . This process known as para-
metric down conversion may occur in a medium with a second-order nonlinear sus-
ceptibility χ (2). A detailed discussion on nonlinear optical interactions is left until
Chap. 9.

We shall make use of the process of parametric down conversion to describe a
parametric amplifier. In a parametric amplifier a signal at frequency ω is amplified
by pumping a crystal with a χ (2) nonlinearity at frequency 2ω . We consider a simple

73
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model where the pump mode at frequency 2ω is classical and the signal mode at
frequency ω is described by the annihilation operator a. The Hamiltonian describing
the interaction is

H = �ωa†a− i�
χ
2

(
a2e2iωt −a†2e−2iωt

)
, (5.1)

where χ is a constant proportional to the second-order nonlinear susceptibility and
the amplitude of the pump. If we work in the interaction picture we have the time-
independent Hamiltonian

HI =−i�
χ
2

(
a2−a†2) . (5.2)

The Heisenberg equations of motion are

da
dt

=
1
i�

[a,HI] = χa†,
da†

dt
=

1
i�

[
a†,HI

]
= χa . (5.3)

The interaction picture can be viewed equivalently as transforming to a frame rotat-
ing at frequency ω .

These equations have the solution

a(t) = a(0)cosh χt + a† (0)sinh χt , (5.4)

which has the form of a generator of the squeezing transformation, see (2.60). As
such we expect the light produced by parametric amplification to be squeezed. This
can immediately be seen by introducing the two quadrature phase amplitudes

X1 = a + a†, X2 =
a−a†

i
(5.5, 5.6)

which diagonalize (5.2 and 5.3)

dX1

dt
= +χX1,

dX2

dt
=−χX2. (5.7, 5.8)

These equations demonstrate that the parametric amplifier is a phase-sensitive am-
plifier which amplifies one quadrature and attenuates the other:

X1 (t) = eχtX1 (0) , (5.9)

X2 (t) = e−χtX2 (0) . (5.10)

The parametric amplifier also reduces the noise in the X2 quadrature and increases
the noise in the X1 quadrature. The variances V (Xi,t) satisfy the relations

V (X1,t) = e2χtV (X1,0) , (5.11)

V (X2,t) = e−2χtV (X2,0) . (5.12)
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For initial vacuum or coherent states V (Xi, 0) = 1, hence

V (X1,t) = e2χt ,

V (X2,t) = e−2χt , (5.13)

and the product of the variances satisfies the minimum uncertainty relation V (X1)
V (X2) = 1. Thus the deamplified quadrature has less quantum noise than the vacuum
level. The amount of squeezing or noise reduction is proportional to the strength of
the nonlinearity, the amplitude of the pump and the interaction time.

5.1.2 Photon Statistics

We shall next consider the photon statistics of the light produced by the parametric
amplifier. First we analyse the light produced from an initial vacuum state. The
intensity correlation function g(2)(0) in this case is

g(2) (0) =
〈a† (t)a† (t)a(t)a(t)〉
〈a† (t)a(t)〉2

= 1 +
cosh2χt

sinh2 χt
. (5.14)

This indicates that the squeezed light generated from an initial vacuum exhibits
photon bunching (g(2)(0) > 1). This is expected for a squeezed vacuum which must
contain correlated pairs of photons.

For an initial coherent state |α〉 we find the mean photon number

〈a† (t)a(t)〉= |α|2 (cosh2χt + cos2θ sinh2χt)+ sinh2 χt , (5.15)

where we have used α = |α|eiθ , and the intensity correlation function

g(2) (0)≈ 1 +
1

|α|2 e−2χt

(
e−2χt−1

)
, θ =

π
4

, (5.16)

where |α|2 is large compared with sinh2 χt and sinh χt cosh χt.
Thus under these conditions the photon statistics of the output light is anti-

bunched. We see that a parametric amplifier evolving from an initial coherent state
|i|α|〉 evolves towards an amplitude squeezed state with a coherent amplitude of
|α|e−χt . This reduction in amplitude is due to the dynamic contraction in the X2

direction described by (5.10) (Fig. 5.1).
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Fig. 5.1 Schematic represen-
tation of the evolution of an
initial coherent state undergo-
ing parametric amplification

5.1.3 Wigner Function

The full photon statistics of the light generated in parametric amplification may be
calculated via a quasi-probability distribution. While we could choose to calculate
the P function we would find that it would become singular due to the quantum
correlations which build up during the amplification process. Therefore we shall
calculate the Wigner distribution which is a nonsingular positive function for this
problem.

The Wigner function describing the state of the parametric oscillator at any time
t may now be calculated via the symmetrically ordered characteristic function,

χ (η ,t) = Tr
{

ρ (0)eηa†(t)−η∗a(t)
}

. (5.17)

Let us take the initial state to be the coherent state ρ(0) = |α0〉〈α0|. Then substitut-
ing (5.4) into (5.17) we find

χ (η ,t) = exp

[
ηα∗0 (t)−η∗α0 (t)− |η |

2

2
cosh2χt + 1

4

(
η2 + η∗2

)
sinh2χt

]
,

(5.18)

where
α0 (t) = α0 cosh χt + α∗0 sinh χt . (5.19)

This may be written as

χ (η ,t) = exp
[
ηT ·α∗0 (t)+ 1

2 ηTΛη
]

, (5.20)

ηT = (η ,−η∗) , (5.21)

αT
0 (t) = (α0 (t) ,α∗0 (t)) (5.22)



5.2 Two-Mode Quantum Correlations 77

and

Λ =
1
2

(
sinh2χt cosh2χt
cosh2χt sinh2χt

)
. (5.23)

The Wigner function is then given by the Fourier transform of χ(η , t), see (4.33).
Using (4.36) the result is

W (α,t) =
2
π

exp

{
1
2

[α−α0 (t)]T C−1
α [α−α0 (t)]

}
, (5.24)

where αT = (α, α∗). This is a two variable Gaussian with mean α0(t) and covari-
ance matrix Cα = Λ. In terms of the real variables x1 = α + α∗. x2 = −i(α −α∗)
(corresponding to the quadrature phase operators), the Wigner function becomes

W (x1,x2) =
1

2π
exp

{
−1

2
[x−x0 (t)]C−1

x [x−x0 (t)]
}

, (5.25)

where

Cx =
(

e2χt 0
0 e−2χt

)
. (5.26)

Thus the Wigner function is a two-dimensional Gaussian with the variance in fluctu-
ations in the quadratures X1 and X2 given by the major and minor axes of the elliptic
contours.

5.2 Two-Mode Quantum Correlations

In two-mode systems there are a richer variety of quantum phenomena since there
exists the possibility of quantum correlations between the modes. These correlations
may give rise to two mode squeezing such, as described by (2.85). There may also
exist intensity and phase correlations between the modes. A simple system which
displays many of the above features is the non-degenerate parametric amplifier [1].

5.2.1 Non-degenerate Parametric Amplifier

The non-degenerate parametric amplifier is a simple generalization of the degen-
erate parametric amplifier considered in the previous section. In this case the clas-
sical pump mode at frequency 2ω1 interacts in a nonlinear optical medium with
two modes at frequency ω1 and ω2. These frequencies sum to the pump frequency,
2ω = ω1 + ω2. It is conventional to designate one mode as the signal and the other
as the idler.

The Hamiltonian describing this system is

H = �ω1a†
1a1 +�ω2a†

2a2 + i�χ
(

a†
1a†

2e−2iωt −a1a2e2iωt
)

, (5.27)
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where a1(a2) is the annihilation operator for the signal (idler) mode. The coupling
constant χ is proportional to the second-order susceptibility of the medium and to
the amplitude of the pump.

The Heisenberg equations of motion in the interaction picture are

da1

dt
= χa†

2 , (5.28)

da†
2

dt
= χa1 . (5.29)

The solutions to these equations are

a1 (t) = a1 cosh χt + a†
2 sinh χt , (5.30)

a2 (t) = a2 cosh χt + a†
1 sinh χt . (5.31)

If the system starts in an initial coherent stat |α1〉, |α2〉, the mean photon number in
mode one after time t is

〈n1 (t)〉= 〈α1,α2

∣∣∣a†
1 (t)a1 (t)

∣∣∣α1,α2〉
= |α1 cosh χt + α∗2 sinh χt|2 + sinh2 χt . (5.32)

The last term in this equation represents the amplification of vacuum fluctuations
since if the system initially starts in the vacuum (α1 = α2 = 0) a number of photons
given by sinh2 χt will be generated after a time t.

The intensity correlation functions of this system exhibit interesting quantum fea-
tures. With a two-mode system we may consider cross correlations between the two
modes. We shall show that quantum correlations may exist which violate classical
inequalities.

Consider the moment 〈a†
1a1a†

2a2〉. We may express this moment in terms of the
Glauber–Sudarshan P function as follows:

〈a†
1a1a†

2a2〉=
∫

d2α1

∫
d2α2 |α1|2 |α2|2 P(α1,α2) . (5.33)

If a positive P function exists the right-hand side of this equation is the classical
intensity correlation function for two fields with the fluctuating complex amplitudes
α1 and α2. It follows from the Hölder inequality that

∫
d2α1d2α2 |α1|2 |α2|2 P(α1,α2)≤

[∫
d2α1d2α2 |α1|4 P(α1,α2)

]1/2

×
[∫

d2α1d2α2 |α2|4 P(α1,α2)
]1/2

. (5.34)

Re-expressed in terms of operators this inequality implies

〈a†
1a1a†

2a2〉 ≤ [〈(a†
1)

2a2
1〉〈(a†

2)
2a2

2〉]1/2 , (5.35)
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a result known as the Cauchy–Schwarz inequality. If the two modes are symmetric
as for the non-degenerate parametric amplifier this inequality implies

〈a†
1a1a†

2a2〉 ≤ 〈(a†
1)

2a2
1〉 . (5.36)

Because we have assumed a positive P function this is a weak inequality and there
exists certain quantum fields which will violate it.

It is more usual to express the Cauchy–Schwarz inequality in terms of the second-
order intensity correlation functions defined for a single-mode field in (3.63). The
two-mode intensity correlation function is defined by

g(2)
12 (0) =

〈a†
1a1a†

2a2〉
〈a†

1a1〉〈a†
2a2〉

. (5.37)

This definition together with

g(2)
i (0) =

〈a†
i a†

i aiai〉
〈a†

i ai〉2
(5.38)

enables one to write the Cauchy–Schwarz inequality as

[g(2)
12 (0)]2 ≤ g(2)

1 (0)g(2)
2 (0) . (5.39)

A stronger inequality may be derived for quantum fields when a Glauber–Sudarshan
P representation does not exist. The appropriate inequality for two non-commuting
operators is, see (3.26),

〈a†
1a1a†

2a2〉2 ≤ 〈(a†
1a1)2〉〈(a†

2a2)2〉 . (5.40)

For symmetrical systems this implies

〈a†
1a1a†

2a2〉 ≤ 〈(a†
1)

2a2
1〉+ 〈a†

1a1〉 (5.41)

or

g(2)
12 (0)≤ g(2)

1 (0)+
1

〈a†
1a1〉

. (5.42)

We now show that the non-degenerate parametric amplifier if initially in the
ground state leads to a maximum violation of the Cauchy–Schwarz inequality
(5.39), as is consistent with the inequality (5.42). That is, the correlations built up
in the parametric amplifier are the maximum allowed by quantum mechanics.

In this system the following conservation law is easily seen to hold,

n1 (t)−n2 (t) = n1 (0)−n2 (0) , (5.43)

where ni(t)≡ a†
i (t)ai(t). This conservation law has been exploited to give squeezing

in the photon number difference in a parametric amplifier as will be described in
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Chap. 8. Using this relation the intensity correlation function may be written

〈n1 (t)n2 (t)〉= 〈n1 (t)2〉+ 〈n1 (t) [n2 (0)−n1 (0)]〉 . (5.44)

If the system is initially in the vacuum state the last term is zero, thus

〈n1 (t)n2 (t)〉= 〈a†
1 (t)a†

1 (t)a1 (t)a1 (t)〉+ 〈a†
1 (t)a1 (t)〉 , (5.45)

which corresponds to the maximum violation of the Cauchy–Schwarz inequality
allowed by quantum mechanics.

Thus the non-degenerate parametric amplifier exhibits quantum mechanical cor-
relations which violate certain classical inequalities. These quantum correlations
may be further exploited to give squeezing and states similar to those discussed in
the EPR paradox, as will be described in the following subsections.

5.2.2 Squeezing

In the interaction picture, the unitary operator for time evolution of the non-
degenerate parametric amplifier is

U (t) = exp
[

χt
(

a†
1a2−a1a2

)]
(5.46)

Comparison with (2.87) shows that U(t) is the unitary two-mode squeezing opera-
tor, S(G) with G =−χt. We will define the squeezing with respect to the quadrature
phase amplitudes of the field at the local oscillator frequency ωLO and phase refer-
ence θ [2].

To see this explicitly consider the positive frequency components of the field that
results for a super-position of the signal and a local oscillator field in a coherent

state with 〈E(−)
LO (t)〉 = |α|e−i(ωLOt+θ). The positive frequency components of the

superposed field is then well approximated by

E(−)
T (t) = E(−) (t)+ |α|e−i(ωLOt+θ) (5.47)

The photo-current when such a field is directed to a detector is then proportional to

i(t) ∝ 〈E(−)
T (t)E(+)

T (t)〉. We now define the average homodyne detection signal by
subtracting off the known local oscillator intensity and normalising by |α|,

s(t) = 〈E(−) (t)ei(θ+ωLOt)+E(+)(t)e−i(θ+ωLOt)〉 (5.48)

The noise in the signal will then be determined by the variance in the operator
ŝ(t) = E(−)(t)ei(θ+ωLOt) + E(+)(t)e−i(θ+ωLOt).

We can now make a change of variable for the frequencies of the signal and
idler fields by writing ω1 = ω− ε , ω2 = ω+ ε with ε > 0. This change of variable
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anticipates a homodyne detection scheme. If we mix these two modes with a local
oscillator at half the pump frequency, i.e. at ωLO = ω, the resulting signal will have
Fourier components at frequencies±ε .

In the new frequency variables, the total field of the signal plus idler in the
Heisenberg picture is the sum of two modes ω± ε symmetrically displaced about
the local oscillator,

E (t) =
1√
2

[
a1 (t)e−i(ω+ε)t + a2 (t)e−i(ω+ε)t + h.c.

]

where ai(t) is the solution given in (5.30 and 5.31), h.c means hermitian conjugate,
and the factor 1/

√
2 has been inserted to give a convenient definition of the vacuum.

This may be written as

E (t) = Xθ (t,ε)cos(ωt + θ)−Xθ+π/2 (t,ε) sin(ωt + θ) (5.49)

and the quadrature phase operators are defined as

Xθ (t,ε) =
1√
2

[(
a1 (t)eiθ + a†

2 (t)e−iθ
)

eiεt + h.c.
]

Xθ+π/2 (t,ε) =
i√
2

[(
a1 (t)eiθ−a†

2 (t)e−iθ
)

eiεt + h.c.
]

In this form, as ε > 0, we can distinguish the positive and negative frequency com-
ponents of the quadrature phase operators with respect to the local oscillator fre-
quency.

If the system starts in the vacuum state, the homodyne detection signal at ε = 0
(the DC signal) will have a variance given by

Xθ (t,ε = 0) = cosh2χt + cos2θsinh2χt (5.50)

Thus for θ = 0, we find that

V (X0 (t,ε = 0)) = e2χt (5.51)

V
(
Xπ/2 (t,ε = 0)

)
= e−2χt (5.52)

Changing the phase of the local oscillator by π/2 enables one to move from en-
hanced to diminished noise in the homodyne signal. We note that the squeezing in
the non-degenerate parametric amplifier is due to the development of quantum cor-
relations between the signal and idler mode. The individual signal and idler modes
are not squeezed as is easily verified.
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5.2.3 Quadrature Correlations and the Einstein–Podolsky–Rosen
Paradox

The non-degenerate parametric amplifier can also be used to prepare states similar to
those discussed in the Einstein–Podolsky–Rosen (EPR) paradox [3]. In the original
treatment two systems are prepared in a correlated state. One of two canonically
conjugate variables is measured on one system and the correlation is such that the
value for a physical variable in the second system may be inferred with certainty.

To see how this behaviour is manifested in the non-degenerate parametric am-
plifier we first define two sets, one for each mode, of canonically conjugate vari-
ables, i.e.,

Xθ
i = aieiθ + a†

i e−iθ (i = 1,2) . (5.53)

The variables Xθ
i and Xθ+π/2

i obey the commutation relation

[
Xθ

i ,Xθ+π/2
i

]
=−2i (5.54)

and are thus directly analogous to the position and momentum operators discussed
in the original EPR paper.

To measure the degree of correlation between the two modes in terms of these
operators, we consider the quantity

V (θ ,φ)≡ 1
2〈(Xθ

1 −Xφ
2 )2〉 . (5.55)

If V (θ ,φ) = 0 then Xθ
1 is perfectly correlated with Xφ

2 . This means a measurement

of Xθ
1 can be used to infer a value of Xφ

2 with certainty. To appreciate why such a
correlation should occur in the non-degenerate parametric amplifier, we can write
the interaction Hamiltonian directly in terms of the defined canonical variables,

HI =−2�χ sin(θ + φ)
(

Xθ
1 Xφ

2 −Xθ+π/2
1 Xφ+π/2

2

)

−2�χ cos(θ + φ)
(

Xθ+π/2
1 Xφ

2 + Xθ
1 Xφ+π/2

2

)
. (5.56)

The Heisenberg equation of motion for Xθ
1 is then

Ẋθ
1 =−4χ

[
Xφ

2 cos(θ + φ)−Xφ+π/2
2 sin(θ + φ)

]
(5.57)

and we see that Xθ
1 is coupled solely to Xφ

2 when θ + φ = 0.
Direct calculation of V (θ ,φ) using the solutions in (5.30 and 5.31) gives

V (θ ,φ) = cosh2χt− sinh2χt cos(θ + φ) . (5.58)

When θ + φ = 0, V (θ ,φ) = e−2χt and, for long times, V (θ ,φ) becomes increas-
ingly small reflecting the build up of correlation between the two variables for this
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case. Initially, of course, the two systems are uncorrelated and V (θ ,φ) = 1. As
V (θ ,φ) tends to zero the system becomes correlated in the sense of the EPR para-
dox. As time proceeds a measurement of Xθ

1 yields an increasingly certain value

of Xφ
2 . However one could equally have measured Xθ−π/2

1 . Thus certain values for

two noncommuting observables Xφ
2 , Xφ+π/2

2 may be obtained without in anyway
disturbing system 2. This outcome constitutes the centre of the EPR argument.

Of course, in reality no measurement enables a perfect inference to be made. To
quantify the extent of the apparent paradox, we can define the variances Vinf(X

φ
2 )

and Vinf(X
φ+π/2
2 ) which determine the error in inferring Xφ

2 and Xφ+π/2
1 from di-

rect measurements on Xθ
2 and Xθ−π/2

1 . In the case of direct measurements made on

(Xφ
2 , Xφ+π/2

2 ) quantum mechanics would suggest

V
(

Xφ
2

)
V
(

Xφ+π/2
2

)
≥ 4 .

However the variances in the inferred values are not constrained. Thus whenever
Vinf(X

φ
2 )Vinf(X

φ+π/2
2 ) < 4, we can claim an EPR correlation paradoxically less than

expected by direct measurement on the same state. This result seems to contradict
the uncertainty principle. That this is not the case is seen as follows. In the standard
uncertainty principle the variances are calculated with respect to the same state.
However in the inference uncertainty product the variances are not calculated in the

same state. That is to say Vinf(X
φ+π/2
2 ) is calculated on the conditional state given a

result for a measurement of Xφ+π/2
2 , however Vinf(X

φ
2 ) is calculated on the different

conditional state given a result for the measurement of Xφ
2 .

Ou et al. [4] performed an experimental test of these for the parametric amplifier.
Using their quadrature normalization, the inferred variances indicate a paradoxical
result if

Vinf

(
Xφ

1

)
Vinf

(
Xφ+π/2

1

)
≤ 2 .

The experimental result for the lowest value of the product was 0.7±0.01.

5.2.4 Wigner Function

The full quantum correlations present in the parametric amplifier may be repre-
sented using a quasi-probability distribution. If both modes of the amplifier are ini-
tially in the vacuum state no Glauber P function for the total system exists at any
time. However, a Wigner function may be obtained. We shall proceed to derive the
Wigner function for the parametric amplifier.

We may define a two mode characteristic function by a simple generalization of
the single-mode definition. For both modes initially in the vacuum state this may be
expressed as
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χ (η2,η2,t) = 〈0|exp
[
η1a†

1 (t)−η∗1 a1 (t)
]

exp
[
η2a†

2 (t)−η∗2 a2 (t)
]
|0〉

= exp

[
−1

2

[
η1 (t) |2− 1

2

[
η2 (t) |2] . (5.59)

where

η1 (t) = η1 cosh χt−η∗2 sinh χt,

η2 (t) = η2 cosh χt−η∗1 sinh χt,

The Wigner function is then given by

W (α1,α2,t)=
1

π4

∫
d2η1

∫
d2η2 exp(η∗1 α1−η1α∗1 )exp(η∗2 α2−η2α∗2 )χ (η1,η2,t)

=
4

π2 exp
(−2|α1 cosh χt−α∗2 sinh χt|2

−2|α2 cosh χt−α∗1 sinh χt|2) . (5.60)

This distribution may be written in terms of the uncoupled c-number variables

γ1 = α1 + α∗2 ,

γ2 = α1−α∗2 .

In these new variables the Wigner function is

W (γ1,γ2) =
4
π2 exp

[
−1

2

(
|γ1|2
e2χt +

|γ2|2
e−2χt

)]
, (5.61)

in which form it is particularly easy to see that squeezing occurs in a linear combi-
nation of the two modes. The variances in the two quadratures being given by e−2χt

and e2χt , respectively. It is interesting to note that even though the state produced
contains non-classical correlations the Wigner function always remains positive.

5.2.5 Reduced Density Operator

When a two component system is in a pure state the reduced state of each component
system, determined by a partial trace operation, will be a mixed state. An interesting
feature of the non-degenerate parametric amplifier is that the reduced state of each
mode is a thermal state, if each mode starts from the vacuum.

To demonstrate this result we first show the high degree of correlation between
the photon number in each mode. The state of the total system at time t is

|ψ (t)〉= exp
[
χt
(

a†
1a†

2−a1a2

)]
|0〉 (5.62)
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We now make use of the disentangling theorem [5]

e
θ
(

a†
1a†

2−a1a2

)
= eΓa†

1a†
2 e
−g

(
a†

1a1+a†
2a2+1

)
e−Γa1a2 , (5.63)

where
Γ = tanh θ ,

g = ln(cosh θ ).

Thus

|ψ (t)〉= e−geΓa†
1a†

2 |0〉= (cosh χt)−1
∞

∑
n=1

(tanh χt)n |n,n〉 , (5.64)

where |n,n〉≡ |n〉1⊗ |n〉2. As photons are created in pairs there is perfect correlation
between the photon number in each mode. The reduced state of either mode is then
easily seen to be

ρi (t) = Tr j {|Ψ(t)〉〈Ψ(t) |}= (cosh χt)−2
∞

∑
n=0

(tanh χt)2n |n〉i〈n| i �= j . (5.65)

This is a thermal state with mean n̄ = sinh2 χt, having strong analogies with the
Hawking effect associated with the thermal evaporation of black holes.

Suppose, however, that a photodetector with quantum efficiency μ has counted
m photons in mode b. What is the state of mode a conditioned on this result? Such
a conditional state for mode a is referred to as the selected state as it is selected
from an ensemble of systems each with different values for the number of photons
counted in mode b. We shall now describe how the conditional state of mode a may
be calculated.

In Chap. 3 we saw that the probability to detect m photons from a field with the
photon-number distribution P(n) and detector efficiency μ is

Pμ (m) =
∞

∑
n=m

(
n
m

)
(1− μ)n−m μmP1 (n) , (5.66)

where P1(n) is the photon number distribution for the field. This equation may be
written as

Pμ (m)≈ Tr
{

ρϒ†
μ (m)ϒμ (m)

}
(5.67)

and the operator ϒ on mode b is defined by

ϒμ (m) =
∞

∑
n=m

(
n
m

)1/2

(1− μ)(n−m)/2 μm/2|n−m〉b〈n| . (5.68)

Note that when μ → 1 this operator approaches the projection operator |0〉b〈m|.
This is quite different to the projection operator |m〉b〈m| that a naive application of
the von Neumann projection postulate would indicate for photon counting measure-
ments, and reflects the fact that real photon-counting measurements are destructive,
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Fig. 5.2 Photon number distribution for mode a given that 5 photons are counted in mode b of a
parametric amplifier. (a) μ = 0.9. (b) μ = 0.6

i.e. photons are absorbed upon detection. The conditional state of mode a is then
given by

ρ (m) =
(
Pμ (m)

)−1 Trb

{
ϒμ (m)ρ ϒ†

m (m)
}

. (5.69)

This equation is a generalisation of the usual projection postulate. In the case of the
correlated two mode state in (5.65), the conditional state of mode a becomes

ρ (m) =
(
Pμ (m)

)−1
∞

∑
n=m

(
n
m

)
μm (1− μ)n−m |n〉〈n| , (5.70)

with
Pμ (m) = (1 + n̄)−1 (λ μ)m [1−λ (1− μ)](m+1) , (5.71)

where λ = tanh2 χt, n̄ = sinh2 χt. Equation (5.70) represents a state with at least
m quanta. In Fig. 5.2 we show the photon number distribution P(m)(n) for this con-
ditional state. As one would expect, when μ → 1, this approaches a number state
|m〉. It should be noted, however, that the conditional state computed above refers
to a situation in which the counting is done after the interaction which produces
the correlated state, is turned off. In a cavity configuration, however, it is likely that
photon counting is proceeding simultaneously with the process of parametric ampli-
fication. In that case one must proceed a little differently, however the overall result
is much the same, i.e., mode a is left with at least m quanta. The details of this more
complicated calculation will be found in the paper by Holmes et al. [6].

5.3 Quantum Limits to Amplification

The non-degenerate parametric amplifier exemplifies many features of general lin-
ear amplification. One such feature is the limit placed on the amplifier gain if the
output is to be squeezed. To see how this limit arises, and to see how it might be
overcome, we write the solutions (5.30 and 5.31) in the form
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Xθ
1,OUT = G1/2Xθ

1, IN +(G−1)1/2 Xθ
2, IN , (5.72)

where G = cosh2 χt and the quadrature phase operators are defined in (5.53). The
subscript IN denotes operators defined at t = 0 and the subscripts 1 and 2 refer
to the signal and idler modes, respectively. In (5.72) the first term describes the
amplification of the quadrature and the second term the noise added by the amplifier.
The variances obey the equation

V
(

Xθ
1,OUT

)
= GV

(
Xθ

1, IN

)
+(G−1)V

(
Xθ

2, IN

)
. (5.73)

The maximum gain consistent with any squeezing at the output is

GMAX =
1 +V

(
Xθ

2, IN

)

V
(

Xθ
1, IN

)
+V

(
Xθ

2, IN

) . (5.74)

If the idler mode is in the vacuum state, V (Xθ
2, IN) = 1 then

GMAX =
2

1 +V
(

Xθ
1, IN

) , (5.75)

which gives a maximum gain of 2 for a highly squeezed state at the signal input. For
higher values of the gain the squeezing at the signal output is lost due to contamina-
tion from the amplification of vacuum fluctuation in the idler input.

Greater gains may be achieved while still retaining the squeezing in the output
signal if the input to the idler mode, is squeezed (V (Xθ

1, IN) < 1).
If we define the total noise in the signal as the sum of the noise in the two quadra-

tures
N = Var

{
Xθ

1

}
+ Var

{
Xθ+π/2

1

}
(5.76)

then
NOUT = G(NIN + A) , (5.77)

where

A =
(

1− 1
G

)(
Var

{
Xθ

2, IN

}
+ Var

{
Xθ+π/2

2, IN

})

≤ 2

(
1− 1

G

)
. (5.78)

This is in agreement with a general theorem for the noise added by a linear am-
plifier [7]. The minimum added noise A = 2(1− 1/G) occurs when Var(Xθ

2, IN) =

Var(Xθ+π/2
2, IN ) = 1, that is, when the idler is in a coherent or vacuum state.
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5.4 Amplitude Squeezed State with Poisson
Photon Number Statistics

Finally we consider a simple nonlinear optical model which produces an amplitude
squeezed state which has Poissonian photon number statistics [8, 9]. The model
describes a quantised field undergoing a self-interaction via the Kerr effect. The
Kerr effect is a nonlinear process involving the third-order nonlinear polarisability
of a nonlinear medium. The field undergoes an intensity dependent phase shift, and
thus we regard the medium as having a refractive index proportional to the intensity
of the field.

Quantum mechanically the Kerr effect may be described by the effective Hamil-
tonian

H = �
χ
2

(
a†)2

a2 , (5.79)

where χ is proportional to the third-order nonlinear susceptibility. The Heisenberg
equation of motion for the annihilation operator is

da
dt

=−iχa†a a . (5.80)

As a†a, the photon number operator, is a constant of motion the photon number
statistics is time invariant. The solution is then

a(t) = e−iχta†aa(0) . (5.81)

Assume the initial state is a coherent state with real amplitude α . The mean ampli-
tude at a later time is then

〈a(θ )〉= α exp
[−α2 (1− cosθ )− iα2 sinθ

]
, (5.82)

where we have defined θ = χt. Typically θ � 1 and then

〈a(θ )〉 ≈ αe−iα2θ−α2θ 2/2 . (5.83)

This result displays two effects. Firstly, there is a rotation of the mean amplitude
by α2θ ; the expected nonlinear phase shift. Secondly, there is a decay of the am-
plitude which goes quadratically with time. This decay is due to the fact that the
Kerr effect transforms intensity fluctuations in the initial coherent state into phase
fluctuations (Fig. 5.3). In effect, the initial coherent state error circle undergoes a
rotational shearing while the area remains constant.

Inspection of Fig. 5.3 suggests that, at least for short times, this system is likely
to produce a squeezed state with reduced amplitude fluctuations. This is indeed the
case. For short times (θ � 1) and large intensities (α2� 1) one finds the minimum
variance of the in-phase quadrature approaches the value

V (X1)min = 0.4 . (5.84)
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Fig. 5.3 Contour of the
Q-function (at a height of
0.3) for the state of a single
mode, prepared in a coherent
state with α = 2.0, evolved
with a Kerr nonlinearity for
θ = 0.25. The equivalent con-
tour for the initial coherent
state is shown as dashed
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This occurs at the value

θmin ≈±0.55
α2 . (5.85)

This short time behaviour is evident in Fig. 5.4a. Thus even though the photon statis-
tics is at all times Poissonian, for short times the field is amplitude squeezed.

We now consider mixing the output of the nonlinear process with a coherent field
on a beam splitter of low reflectivity. The output field is now given by

a0 =
√

T e−iθa†aa +
√

Rβ , (5.86)

where β is the coherent amplitude of the mixing field, and T and R are, respec-
tively, the transmitivity and reflectivity of the beam splitter. We assume T → 1 with√

Rβ → ξ , that is the mixing field is very strong. In this limit we have

a0 = e−iθa†aa + ξ . (5.87)

We now can choose ξ so as to minimise the photon number noise at the output.
This requires ξ to be −π/2 out-of-phase with the coherent excitation of the input.
As θ increases, the ratio of the number variance to number mean decreases to a
minimum at θ = 1/2〈n0〉−2/3 (for optimal ξ ), and then increases. The minimum
photon number variance is [10]

V (n0) = 〈n0〉1/3 , (5.88)

where 〈n0〉= 〈n〉+ |ξ |2. This is smaller than the similar result for a squeezed state,
which has a minimum value of 〈n〉2/3.
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Fig. 5.4 A plot of the variance
in the in-phase quadrature for
the Kerr interaction, versus
the dimensionless interaction
time θ , with an initial coher-
ent state of amplitude α = 4.0.
(a) Short time behaviour. (b)
Long time behaviour

Were the rotational shearing to continue (as one might expect from a classical
model) the variance in the in-phase and out-of-phase quadratures would saturate at
the value 2α2 + 1. This would be the variance for a number state with the photon
number equal to α2. That this does not happen is evident in Fig. 5.4b. Indeed, from
(5.82) it is clear that for θ = 2π the mean amplitude returns to the initial value. A
similar result holds for the variances (Exercise 5.6). This is an example of a quantum
recurrence and arises from the discrete nature of the photon number distribution for
a quantised field. The details are left for Exercise 5.6. In fact at θ = π the system
evolves to a coherent superposition of coherent states:

|ψ (θ = π)〉|= 1√
2

(
eiπ/4|iα〉+ e−iπ/4|− iα〉

)
. (5.89)

This phenomenon would be very difficult to observe experimentally as typical val-
ues of χ would require absurdly large interaction times, which in practice means
extremely large interaction lengths. In Chap. 15 we will show that dissipation also
makes the observation of such a coherent superposition state unlikely in a Kerr
medium.
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Exercises

5.1 Derive the Wigner and P functions for the reduced density operator of the
signal mode for the non-degenerate parametric amplifier.

5.2 Show that, n1− n2, the difference in the number of photons in the signal and
idler mode is a constant for the parametric amplifier.

5.3 The Hamiltonian for the frequency up-converter is

H = �ω1a†
1a1 +�ω2a†

2a2 +�κ
(

eiωt a†
1a2 + e−iωta1a†

2

)
,

where ω = ω2−ω1. Show that n1 + n2, the sum of the number of photons in
the signal and idler modes, is a constant.

5.4 Show that the process of parametric frquency upconversion is noiseless, that
is a coherent state remains coherent.

5.5 Take the initial state for the frequency upconverter to be |N,N〉. Express the
density operator at time t as the tensor product of number states. Hint: Use the
disentangling theorem, see (5.63). What is the reduced density operator for a
single mode?

5.6(a) If the initial state for the Kerr-effect model is a coherent state with real
mean amplitude, calculate the variances for the in-phase and out-of-phase
quadratures. Show that at χt = π the field exhibits amplitude squeezing for
small values of the amplitude.

(b) Show that at χt = π the state may be written in the form

1√
2

(
eiπ/4|− iα〉+ e−iπ/4|iα

)
.
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Chapter 6
Stochastic Methods

Abstract In all physical processes there is an associated loss mechanism. In this
chapter we shall consider how losses may be included in the quantum mechanical
equations of motion. There are several ways in which a quantum theory of damping
may be developed. We shall adopt the following approach: We consider the system
of interest coupled to a heat bath or reservoir. We first derive an operator master
equation for the density operator of the system in the Schrödinger or interaction
picture. Equations of motion for the expectation values of system operators may
directly be derived from the operator master equation. Using the quasi-probability
representations for the density operator discussed in Chap. 4, the operator master
equation may be converted to a c-number Fokker–Planck equation. For linear prob-
lems a time-dependent solution to the Fokker–Planck equation may be found. In cer-
tain nonlinear problems with an appropriate choice of representation the steady-state
solution for the quasi-probability distribution may be found from which moments
may be calculated.

Using methods familiar in stochastic processes the Fokker–Planck equation
may be converted into an equivalent set of stochastic differential equations. These
stochastic differential equations of which the Langevin equations are one example
are convenient when linearization is necessary. We begin then with a derivation of
the master equation. We follow the method of Haake [1].

6.1 Master Equation

We consider a system described by the Hamiltonian HS coupled to a reservoir de-
scribed by the Hamiltonian HR. The reservoir may be considered to be a large num-
ber of harmonic oscillators as, for example, the modes of the free electromagnetic
field or phonon modes in a solid. In some cases the reservoir may be more appro-
priately modelled as a set of atomic energy levels. The derivation of the master
equation is not dependent on the specific reservoir model. There is a weak inter-
action between the system and the reservoir given by the Hamiltonian V . Thus the
total Hamiltonian is

93
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H = HS +HR +V (6.1)

Let w(t) be the total density operator of the system plus reservoir in the interaction
picture. The equation of motion in the interaction picture is

dw(t)
dt

=− i
h̄
[V (t),w(t)] (6.2)

The reduced density operator for the system is defined by

ρ(t) = TrR{w(t)} (6.3)

where TrR indicates a trace over reservoir variables. We assume that initially the
system and reservoir are uncorrelated so that

w(0) = ρ(0)⊗ρR (6.4)

where ρR is the density operator for the reservoir.
Integrating (6.2) we obtain

w(t) = w(0)− i
h̄

t∫
0

dt1[V (t1),w(t1)] . (6.5)

Iterating this solution we find

w(t) = w(0)+
∞

∑
n=1

(
− i

h̄

)n t∫
0

dt1

t1∫
0

dt2 · · ·

×
tn−1∫
0

dtn[V (t1), [V (t2), . . . [V (tn),w(0)]]] . (6.6)

Performing the trace over reservoir variables

ρ(t) = ρ(0)+
∞

∑
n=1

(
− i

h̄

)n t∫
0

dt1

t1∫
0

dt2 · · ·
tn−1∫
0

dtn

×TrR{[V (t1), [V (t2), . . . [V (tn), ρR⊗ρ(0)]]]}
≡ (1 +U1(t)+U2(t)+ · · ·)ρ(0) (6.7)

≡U(t)ρ(0)

where

Un(t) =
(
− i

h̄

)n

TrR

t∫
0

dt1

t1∫
0

dt2 · · ·

×
tn−1∫
0

dtn[V (t1), [V (t2), . . . [V (tn),ρR⊗ (·)]] . . .] . (6.8)
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Thus

dρ
dt

= [U̇1(t)+U̇2(t)+ · · · ]U(t)−1ρ(t)

≡ l(t)ρ(t) (6.9)

where the generator of time development is

l(t) = [U̇1(t)+U̇2(t)+ · · · ]U(t)−1 . (6.10)

We now assume that V (t) is such that

TrR(V (t)ρR) = 0 . (6.11)

This ensures that U1(t) = 0. If the perturbation is weak we may drop terms from l(t)
of order higher than two. Thus

l(t) = U̇2(t)

=− 1

h̄2

t∫
0

dt1 TrR[V (t), [V (t1),ρR⊗ (·)]] . (6.12)

Thus to second order in the perturbation

dρ
dt

=− 1

h̄2

t∫
0

dt1 TrR[V (t), [V (t1),ρR⊗ρ(t)]] . (6.13)

The next-order correction is at least quartic in the coupling and thus we expect (6.13)
to be a good approximation.

Let us now consider the case of a damped simple harmonic oscillator. In this case

V (t) = h̄(a†Γ(t)eiω0t + aΓ†(t)e−iω0t) (6.14)

where
Γ(t) = ∑

j

g jb je−iω jt , (6.15)

and
[b j,b

†
k] = δ jk . (6.16)

Substituting (6.14) into (6.13) we find that the following integrals are required

I1 =
t∫

0

dt1〈Γ(t)Γ(t1)〉eiω0(t+t1) , (6.17)

I2 =
t∫

0

dt1〈Γ†(t)Γ†(t1)〉e−iω0(t+t1) , (6.18)
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I3 =
t∫

0

dt1〈Γ(t)Γ†(t1)〉eiω0(t−t1) , (6.19)

I4 =
t∫

0

dt1〈Γ†(t)Γ(t1)〉e−iω0(t−t1) (6.20)

which we now evaluate.
Using the definition of Γ(t) we have

I1 =
t∫

0

dt1 ∑
i, j

gig j〈bib j〉Re−i(ωit+ω jt1)eiω0(t+t1) . (6.21)

Converting the sum over modes to a frequency-space integral

I1 =
t∫

0

dt1

∞∫
0

dω1

2π
ρ(ω1)

∞∫
0

dω2

2π
ρ(ω2)g(ω1)g(ω2)〈b(ω1)b(ω2)〉R

× e−i(ω1t+ω2t1)+iω0(t+t1) (6.22)

where ρ(ω) is the density of states function.
For a thermal bath the phase dependent correlation function 〈b(ω1)b(ω2)〉R = 0.

However, certain specially prepared reservoirs such as squeezed reservoirs may have
phase-dependent correlations.

In order to include these we now assume that

〈b(ω1)b(ω2)〉= 2πM(ω1)δ (2ω0−ω1−ω2) (6.23)

which corresponds to a multimode squeezed vacuum state with the carrier frequency
equal to the cavity resonance frequency. Thus

I1 =
t∫

0

dt1

∞∫
0

dω
2π

ρ(ω)ρ(2ω0−ω)g(ω)g(2ω0−ω)M(ω)ei(ω0−ω)(t−t1) . (6.24)

Note that the time integral depends only on t− t1. This suggests the change of vari-
able τ = t− t1 and thus

I1 =
t∫

0

dτ
∞∫

0

dω
2π

ρ(ω)ρ(2ω0−ω)g(ω)g(2ω0−ω)M(ω)ei(ω0−ω)τ . (6.25)

We now make the first Markov approximation by assuming ρ(ω), g(ω) and M(ω)
are slowly varying functions around ω = ω0, where ω0 is very large. Thus it is
convenient to make the change of variable ε = ω−ω0 and write

I1 ≈
t∫

0

dτ
∞∫
−∞

dε
2π

ρ2(ε + ω0)g2(ε + ω0)M(ε + ω0)e−iετ , (6.26)
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assuming a symmetry around ω0. Since the integral over frequency is assumed to
be a rapidly decaying function of time we have extended the upper limit of the time
integration to infinity. Interchanging the order of the time and frequency integral this
term becomes

I1 ≈
∞∫
−∞

dε
2π

ρ2(ε + ω0)g2(ε + ω0)M(ε + ω0)
[

πδ (ε)− i PV

(
1
ε

)]
(6.27)

where we have used
∞∫

0

dτ e±iετ = πδ (ε)± i PV

(
1
ε

)
(6.28)

with PV being the Cauchy principal value part defined by

PV

b∫
−a

f (ω)
ω

= lim
ε→0

⎛
⎝
−ε∫
−a

f (ω)
ω

dω +
b∫

ε

f (ω)
ω

dω

⎞
⎠ . (6.29)

If we now define the damping rate γ by

γ ≡ ρ2(ω0)g2(ω0) (6.30)

and a term

Δ̄ = PV

∞∫
−∞

dε
2π

1
ε

ρ2(ε + ω0)g2(ε + ω0)M(ε + ω0) (6.31)

then
I1 =

γ
2

M(ω0)+ iΔ̄ . (6.32)

Proceeding in a similar way we find

I2 =
γ
2

M∗(ω0)− iΔ̄ , (6.33)

I3 =
γ
2
(N(ω0)+ 1)− iΔ , (6.34)

I4 =
γ
2

N(ω0)− iΔ′ , (6.35)

where the function N(ω) is defined by

〈b†(ω)b(ω ′)〉= 2πN(ω)δ (ω −ω ′)

and is thus proportional to the intensity spectrum of the reservoir. The term Δ is
defined by

Δ = PV

∞∫
−∞

dε
2π

1
ε

ρ2(ω0 + ε)g2(ω0 + ε)(N(ω0 + ε)+ 1) . (6.36)
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This term represents a small shift in the frequency of the oscillator. In the case
where the system is a two-level atom, this term contributes to the Lamb shift which
we discuss in Chap. 10. In what follows we ignore the effects of Δ and Δ̄.

Substituting the above results into (6.13) we find that the evolution of the sys-
tem’s density operator in the interaction picture is described by the master equation

dρ
dt

=
γ
2
(N + 1)(2aρa†−a†aρ−ρa†a)+

γ
2

N(2a†ρa−aa†ρ−ρaa†)

+
γ
2

M(2a†ρa†−a†a†ρ−ρa†a†)+
γ
2

M∗(2aρa−aaρ−ρaa) . (6.37)

(For convenience, we have suppressed the functional dependence of N(ω0) and
M(ω0)).

If the bath is in thermal equilibrium at temperature T, M = 0 and

N(ω0) = (eh̄ω0/kT −1)−1 (6.38)

which is just the mean number of bath quanta at frequency ω0. In this case the master
equation considerably simplifies. If the bath temperature is zero, N = 0, and the
master equation simplifies further. In general the positivity of the density operator
requires, |M|2 ≤ N(N + 1).

Equations of motion for the expectation values of system operators may be di-
rectly derived from the master equation, (6.37). For example, the mean amplitude
of the simple harmonic oscillator is given by

d〈a〉
dt

= Tr

{
a

dρ̂
dt

}
=− γ

2
〈a〉 (6.39)

which has the solution
〈a(t)〉= 〈a(0)〉e−γt/2 . (6.40)

(Note in the Schrödinger picture the mean amplitude evolves as 〈a(t)〉= 〈a(0)〉e−iωt

e−γt/2). Thus the mean amplitude decays at a rate γ/2. The mean number of quanta
〈n〉= 〈a†a〉 obeys the equation

d〈a†a〉
dt

=−γ〈a†a〉+ γN . (6.41)

The solution to this equation is

〈n(t)〉= 〈n(0)〉e−γt + N(1− e−γt) . (6.42)

In the steady state 〈n(t)〉 → N and the mean number of quanta in the oscillator is
equal to the mean number of quanta in the reservoir at that temperature. The role of
the terms multiplied by M can be seen by evaluating the equation of motion for 〈a2〉,

d
dt
〈a2〉=−γ〈a2〉+ γM . (6.43)
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Thus these terms lead to a driving force on the second-order phase dependent
moments.

The master equation (6.37) applies to a free damped harmonic oscillator in the
interaction picture. If the harmonic oscillator is perturbed by an additional interac-
tion HI, the master equation in the interaction picture becomes

dρ
dt

=− l

h̄
[HI ,ρ ]+

γ
2
(N + 1)(2aρa†−a†aρ−ρa†a)

+
γ
2

N(2a†ρa−aa†ρ−ρaa†)

+
γ
2

M(2a†ρa†− (a†)2ρ−ρ(a†)2)+
γ
2

M∗(2aρa−a2ρ−ρa2) .

(6.44)

In general, the equations of motion for the mean amplitude, mean quantum number
etc. are not as easily obtained from (6.44), as they were for the free damped har-
monic oscillator. To proceed in such situations, it is desirable to convert the master
equation to an equivalent c-number partial differential equation. We now discuss
various ways this may be done.

6.2 Equivalent c-Number Equations

6.2.1 Photon Number Representation

The operator master equation may be converted into an equation for the matrix
elements of ρ in the number state basis:

∂ρmn

∂ t
= γN[(nm)1/2ρm−1, n−1− 1

2
(m+ n + 2)ρmn].

+ γ(N + 1){[(m+ 1)(n + 1)]1/2ρm+1, n+1− 1
2
(m+ n)ρmn}

− γ
2

M
{

2[m(n + 1)]1/2ρm−1, n+1−
√

(n + 1)(n + 2)ρm,n+2

−
√

m(m−1)ρm−2, n

}
− γ

2
M∗

{
2[n(m+ 1)]1/2ρm+1,n−1

−
√

(m+ 1)(m+ 2)ρm+2, n−
√

n(n−1)ρm,n−2

}
(6.45)

where ρm, n ≡ 〈m|ρ |n〉. This gives an infinite hierarchy of coupled equations for the
off-diagonal matrix elements. When M = 0 the diagonal elements ρm, m are coupled
only amongst themselves and not coupled to the off-diagonal elements. In this case
the diagonal elements satisfy

dP(n)
dt

= t+(n−1)P(n−1)+ t−(n + 1)P(n + 1)− [t+(n)+ t−(n)]P(n) (6.46)
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where we have set P(n) = 〈n|ρ |n〉 and defined the transition probabilities

t+(n)≡ γN(n + 1) , (6.47)

t−(n)≡ γ(N + 1)n . (6.48)

In the steady state the detailed balance condition holds:

t−(n)P(n) = t+(n−1)P(n−1) (6.49)

and the steady state solution is found by iteration

Pss(n) = P(0)
n

∏
k=1

t+(k−1)
t−(k)

. (6.50)

Thus the steady state solution for the ordinary damped harmonic oscillator
(M = 0) is

Pss(n) =
1

1 + N

(
N

1 + N

)n

. (6.51)

An optical cavity damped into a reservoir with phase-independent correlation func-
tions has a power law photon number distribution of thermal light.

In the more general case M �= 0, or when there are additional terms in the master
equation such as linear driving with the Hamiltonian H0 = h̄[ε(t)a† + ε∗(t)a], the
coupling of diagonal and off-diagonal matrix elements makes the photon number
representation less convenient for determining ρ(t).

6.2.2 P Representation

An operator master equation may be transformed to a c-number equation using the
Glauber–Sudarshan representation for ρ . It is necessary to first establish the rules
for converting operators to an equivalent c-number form. We know the relations

a|α〉= α|α〉 , (6.52)

〈α|a† = α∗〈α| . (6.53)

To derive other relations it is convenient to use the Bargmann state ‖ α〉 defined by

‖ α〉= e1/2|α |2 |α〉 (6.54)

so that

a† ‖ α〉= ∑
n

αn
√

n!

√
n + 1|n + 1〉

=
∂

∂α
‖ α〉 . (6.55)
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Similarly

〈α ‖ a =
∂

∂α∗
〈α ‖ . (6.56)

Hence, given the P representation

ρ =
∫

d2α ‖ α〉〈α ‖ e−|α |
2

P(α) (6.57)

we find

a†ρ =
∫

d2α
∂

∂α
(‖ α〉〈α ‖)e−αα∗ P(α) (6.58)

and integrating by parts

a†ρ =
∫

d2α ‖ α〉〈α ‖ e−|α |
2
(

α∗ − ∂
∂α

)
P(α) . (6.59)

We can thus make an operator correspondence between a† and α∗ − ∂/∂α . A sim-
ilar formula holds for a. Summarizing we have the following operator correspon-
dences:

aρ ↔ αP(α),

a†ρ ↔
(

α∗ − ∂
∂α

)
P(α),

ρa↔
(

α− ∂
∂α∗

)
P(α),

ρa†↔ α∗P(α) . (6.60)

Consider the correspondences for operator products

a†aρ →
(

α∗ − ∂
∂α

)
αP , (6.61a)

ρa†a→
(

α− ∂
∂α∗

)
α∗P . (6.61b)

Notice that the order of the operators in (6.61b) reverses, since acting on ρ , they
operate from the right, whereas on P, they operate from the left.

Note that α and α∗ are not independent variables. In terms of real variables we
may write

α = x + iy,

α∗ = x− iy,

∂
∂α

=
1
2

(
∂
∂x
− i

∂
∂y

)
,

∂
∂α∗

=
1
2

(
∂
∂x

+ i
∂
∂y

)
. (6.62)
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To obtain a c-number equation we substitute the P representation for ρ into the
master equation and use the operator correspondences. This leads to the equation

∂P(α)
∂ t

=
[

1
2

γ
(

∂
∂α

α +
∂

∂α∗
α∗

)
+

γ
2

(
M∗

∂ 2

∂α∗2
+ M

∂ 2

∂α2

)
+ γN

∂ 2

∂α∂α∗

]
P(α) .

(6.63)

When M > N this equation has “non positive-definite” diffusion, hence the P repre-
sentation is unable to describe the system in terms of a classical stochastic process.
Alternative representations will be discussed later in this chapter. When M ≤ N
(6.63) has the form of a Fokker–Planck equation. We shall discuss some useful
properties of Fokker–Planck equations below.

6.2.3 Properties of Fokker–Planck Equations

A general Fokker–Planck equation in n variables may be written in the form

∂
∂ t

P(x) =
[
− ∂

∂x j
A j(x)+

1
2

∂
∂xi

∂
∂x j

Di j(x)
]

P(x) . (6.64)

The first derivative term determines the mean or deterministic motion and is called
the drift term, while the second derivative term, provided its coefficient is positive
definite, will cause a broadening or diffusion of P(x, t) and is called the diffusion
term. A = (A j) is the drift vector and D = (Di j) is the diffusion matrix. The different
role of the two terms may be seen in the equations of motion for 〈xk〉 and 〈xkxl〉.

d〈xk〉
dt

= 〈Ak〉 , (6.65)

d〈xkxl〉
dt

= 〈xkAl〉+ 〈xlAk〉+ 1
2
〈Dkl + Dlk〉 . (6.66)

We see that Ak determines the motion of the mean amplitude whereas Dlk enters into
the equation for correlations.

Thus, for the damped harmonic oscillator described by (6.63)

d〈α〉P
dt

=− γ
2
〈α〉P , (6.67)

d〈α∗α〉P
dt

=−γ〈α∗α〉P + γN , (6.68)

which are equivalent to (6.39 and 6.41) derived directly from the master equa-
tion (6.37). Note that the expectation values 〈〉P are defined by integrals over
P(α, t).
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6.2.4 Steady State Solutions – Potential Conditions

For many problems in nonlinear optics it is sufficient to know the steady state solu-
tion. That is the solution after all transients have died out. We shall therefore seek a
steady state solution to (6.64).

In the steady state we set the time derivatives to zero which gives

∂
∂xi

[
−Ai(x)P(x)+

1
2

∂
∂x j

Di j(x)P(x)
]

= 0 . (6.69)

As a first attempt consider

Ai(x)P(x) =
1
2

∂
∂x j

[Di j(x)P(x)] (6.70)

which implies

Di j
∂ lnP
∂x j

= 2Ai(x)− ∂Di j

∂x j
(x) . (6.71)

Denoting P(x) = exp[−φ(x)] we wish to solve

−∂φ(x)
∂xi

= 2(D−1)i j

[
A j(x)− 1

2

∂D jk

∂xk

]
≡ Fi(x) . (6.72)

If we consider Fj(x) as a generalized force, φ(x) corresponds to a potential. The
system of equations (6.72) can be solved by integration if the so called potential
conditions are satisfied

−∂ 2φ
∂xi∂x j

=
∂Fj

∂xi
=

∂Fi

∂x j
=
−∂ 2φ
∂x j∂xi

. (6.73)

These conditions say that the function φ is well behaved and that the multivariable
integral is independent of the path of integration. The potential conditions are always
satisfied in the one dimensional case.

Provided the potential conditions are satisfied a steady state solution of the form

P(x) = N exp[−φ(x)] (6.74)

exists where

φ(x) =
x∫

0

2[D(x)−1]i j

[
−A j(x)+

1
2

∂D jk

∂xk

]
dxi .

The turning points of the potential φ correspond to the values x such that for each
j = 1, . . . , n (

A j(x)− 1
2

∂D jk(x)
∂xk

)
= 0 . (6.75)
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In systems where the diffusion matrix is diagonal and constant (Di j = Wδi j) (6.72)
become

−∂φ(x)
∂xi

=
2Ai(x)

W
. (6.76)

Hence the turning points of the potential φ correspond exactly to the determinis-
tic steady state solutions, that is the steady state solutions to the first-order moment
equations.

6.2.5 Time Dependent Solution

In the case where the drift term is linear in the variable (x) and the diffusion coef-
ficient is a constant, a solution to the Fokker–Planck equation may be found using
the method of Wang and Uhlenbeck [2]. We consider the Fokker–Planck equation

∂P
∂ t

=−∑ai
∂

∂xi
(xiP)+

1
2

di j
∂ 2P

∂xi∂x j
. (6.77)

The Greens function solution to this equation given by the initial condition

P(xi,0) = δ (xi− x0
i )

is

P(xi,x
0
i ,t) =

1

πn/2[det σi j(t)]1/2
exp

(
−∑

i j

σi j(t)−1{[xi− x0
i exp(ait)]

×[x j− x0
j exp(a jt)]}

)
(6.78)

where

σi j(t) =
−2di j

ai + a j
{1− exp[(ai + a j)t]} .

The solution for a damped harmonic oscillator initially in a coherent state with
P(α, 0) = δ 2(α−α0) is

P(α,t) =
1

πN(1− e−γt)
exp

(
−|α−α0e−γt/2|2

N(1− e−γt)

)
. (6.79)

This represents an initial coherent state undergoing relaxation with a heat bath. Its
coherent amplitude decays away and fluctuations from the heat bath cause its P
function to assume a Gaussian form characteristic of thermal noise. The width of
the distribution grows with time until the oscillator reaches equilibrium with the
heat bath.

From the above solution we may construct solutions for all initial conditions
which have a non-singular P representation. It is not, however, possible to construct
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the solution for the oscillator initially in a squeezed state since no non-singular P
function exists for such states. Nor can we find the solution for an oscillator damped
into a squeezed bath.

We now consider alternative methods of converting the operator master equa-
tion to a c-number equation, which can be used for initial squeezed states or a
squeezed bath.

6.2.6 Q Representation

A c-number representation for the Q function is obtained by first normally ordering
all operator products. We shall make use of the following theorem [3].

If f (a, a†) is a function which may be expanded in a power series in a and a†,
then

[a, f (a,a†)] =
∂ f
∂a† , (6.80a)

[a†, f (a,a†)] =−∂ f
∂a

. (6.80b)

The proof of these relations is as follows: We assume that we may expand f in
antinormal order f (a)

[a†, f ] = ∑
r,s

f (a)
r,s [a†,ar(a†)s] . (6.81)

Using the following result for the commutators

[A, BC] = [A,B]C + B[A, C] (6.82)

where A, B and C are noncommuting operators, we may write

[a†, f ] = ∑
r,s

f (a)
r,s {[a†,ar]a†s + ar[a†,a†s]}

=−∑
r,s

f (a)
r,s rar−1a†s (6.83)

=−∂ f
∂a

. (6.84)

The proof of (6.80a) follows in a similar way.
We consider as an example the term

ρa†a = a†ρa− [a†,ρ ]a . (6.85)

Using the result above

ρa†a = a†ρa +
∂ρ
∂a

a . (6.86)



106 6 Stochastic Methods

Taking matrix elements in coherent states yields

〈α|ρa†a|α〉= α
〈

α
∣∣∣∣a†ρ +

∂ρ
∂a

∣∣∣∣α
〉

=
(
|α|2 + α

∂
∂α

)
Q(α) . (6.87)

Following this procedure we may convert the master equation for the damped har-
monic oscillator into a c-number equation for the Q function

∂Q
∂ t

=
γ
2

(
∂

∂α
α+

∂
∂α∗

α∗
)

Q+
γ
2

[
M∗

∂ 2

∂α∗2 + M
∂ 2

∂α2 + 2(N + 1)
∂ 2

∂α∂α∗

]
Q .

(6.88)

This differs from the corresponding equation of motion for the P function only
through the phase independent diffusion coefficient which is N + 1 rather than N.
This is sufficient to give a positive definite diffusion matrix when the bath is in an
ideal squeezed state.

To illustrate the use of the Q function consider a damped oscillator which is
initially in the squeezed state |α0, r〉. Using the Wang and Uhlenbeck solution for
an initial δ -function and convoluting this with the Gaussian Q function for an initial
squeezed state we arrive at the result

Q(α, t) =
1

2π
√

det σ(t)
exp[−1

2
u(t)Tσ−1(t)u(t)] (6.89)

where

u(t) =
(

α−α0e−γt/2

α∗ −α∗0 e−γt/2

)

σ(t) =
( −sinh 2r cosh 2r + 1

cosh 2r + 1 −sinh 2r

)
e−γt

2
+
(

M N + 1
N + 1 M∗

)
(1− e−γt).

The variances for the quadrature phase operators Xi for the oscillator are then easily
found to be

V (X1) =
1
4
[(e−2r−1)e−γt + 2(N + Re{M})(1− e−γt)+ 1] , (6.90a)

V (X2) =
1
4
[(e2r + 1)e−γt + 2(N + Re{M})(1− e−γt)+ 1] . (6.90b)

In Fig. 6.1 we depict the evolution of an initial squeezed state coupled to a zero
temperature reservoir (N = M = 0). The amplitude of the squeezed state damps
to zero and the variances in X1 and X2 become equal at the value one corresponding
to the vacuum.
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Fig. 6.1 Evolution of the
error contour of an initial
squeezed state of a simple
harmonic oscillator damped
into a zero temperature
heat bath

6.2.7 Wigner Function

Alternatively one may convert the operator master equation into a c-number equa-
tion via the Wigner function. This is best accomplished by deriving an equation for
the characteristic function

χ(β ) = Tr{Dρ} (6.91)

where
D = eβ a†−β ∗a .

An equation of motion for χ(β ) may be derived as follows

∂ χ(β )
∂ t

= Tr

{
D

∂ρ
∂ t

}
. (6.92)

To illustrate the technique we shall derive the equation of motion for the Wigner
function of a damped harmonic oscillator.

We require some operator rules to convert to differential operators. Writing D in
normal order

D = e−β β ∗/2eβ a†
e−β ∗a , (6.93)

∂
∂β

D =−β ∗

2
D+ a†D , (6.94)

or

a†D =
(

∂
∂β

+
β ∗

2

)
D . (6.95)

Similarly we may show

Da =
(−β

2
− ∂

∂β ∗

)
D . (6.96)
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Writing D in antinormal order

D = eβ β ∗/2e−β ∗aeβ a†
. (6.97)

Thus
∂

∂β
D =

β ∗

2
D+ Da† (6.98)

or

Da† =
(

∂
∂β
− β ∗

2

)
D (6.99)

and similarly

aD =
(

β
2
− ∂

∂β ∗

)
D . (6.100)

Then using these rules the master equation (6.37) yields the following equation for
the characteristic function

∂ χ(β )
∂ t

=
γ
2

(
−|β |2−β ∗

∂
∂β ∗
−β

∂
∂β

)
χ(β )− γN|β |2χ(β )

− γM
2

(β ∗)2χ(β )− γM∗

2
β 2χ(β ) . (6.101)

The equation for the Wigner function is obtained by taking the Fourier transform of
this equation since

W (α) =
∫

eβ ∗α−β α∗χ(β )d2β . (6.102)

Thus
∫

eβ ∗α−α∗β β ∗β χ(β )d2β =−
∫ ∂

∂α
∂

∂α∗
(eβ ∗α−α∗β )χ(β )d2β

=−∂ 2W (α)
∂α ∂α∗

, (6.103)

and
∫

eβ ∗α−α∗β β ∗
∂

∂β ∗
χ(β )d2β =

∂
∂α

∫
(eβ ∗α−α∗β )

∂
∂β ∗

χ(β )d2β

=− ∂
∂α

∫
χ(β )

∂
∂β ∗

(eβ ∗α−α∗β )d2β (6.104)

=− ∂
∂α

[αW (α)] . (6.105)

Using these results we may write the equation for the Wigner function as

∂W (α)
∂ t

=
γ
2

(
∂

∂α
α +

∂
∂α∗

α∗
)

W

+
γ
2

[
M∗

∂ 2

∂α∗2
+ M

∂ 2

∂α2 + 2

(
N +

1
2

)
∂ 2

∂α ∂α∗

]
W . (6.106)
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A comparison of the three equations (6.63, 6.88 and 6.106) for the P, Q and Wigner
functions show that they differ only in the coefficient of the diffusion term being
γN, γ(N + 1) and γ(N + 1/2), respectively. However, the additional +γ and +γ/2
in the equations for the Q and Wigner function are sufficient to ensure that these
equations have positive definite diffusion.

6.2.8 Generalized P Representation

In our study of nonlinear problems we shall find systems which either do not give
Fokker–Planck equations in the Q and Wigner representations or no steady state
solution may readily be found. For some systems a steady state solution in terms of
a Glauber–Sudarshan P representation does not exist. For such systems the complex
P representation is sometimes useful in deriving a steady state solution to Fokker–
Planck equations. The positive P representation is useful when it is desirable to have
a Fokker–Planck equation with a positive definite diffusion term, as is necessary in
order to deduce the corresponding stochastic differential equations.

Master equations may be converted to a c-number representation using the com-
plex P representation by an analogous set of operator rules used for the diagonal P
representation.

The nondiagonal coherent state projection operator is defined as

Λ(α) =
|α〉〈β ∗|
〈β ∗|α〉 (6.107)

where (α) denotes (α, β ). The following identities hold

aΛ(α) = αΛ(α), a†Λ(α) =
(

β +
∂

∂α

)
Λ(α),

Λ(α)a† = Λ(α)β , Λ(α)a =
(

∂
∂β

+ α
)

Λ(α) . (6.108)

By substituting the above identities into (4.65) defining the generalized P repre-
sentation, and using partial integration (providing the boundary terms vanish) these
identities can be used to generate operations on the P function depending on the
representation.

a) Complex P representation

aρ↔ αP(α), a†ρ ↔
(

β − ∂
∂α

)
P(α),

ρa†↔ β P(α), ρa↔
(

α− ∂
∂β

)
P(α) . (6.109)

This procedure yields a very similar equation to that for the Glauber–Sudarshan P
function. We assume that, by appropriate reordering of the differential operators,
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we can reduce an operator master equation to the form [where (α, β ) = (α) =
(α(1), α(2))]

∂ρ
∂ t

=
∫
c

∫

c′
Λ(α)

∂P(α)
∂ t

dα dβ

=
∫
c

∫

c′
dα(1) dα(2) P(α)

[
Aμ(α)

∂
∂αμ +

1
2

Dμν(α)
∂

∂αμ
∂

∂αν

]
Λ(α) .

(6.110)

We now integrate by parts and if we can neglect boundary terms, which may be
made possible by an appropriate choice of contours, c and c′, at least one solution is
obtained by equating the coefficients of Λ(α)

∂P(α)
∂ t

=
[
− ∂

∂αμ Aμ(α)+
1
2

∂
∂αμ

∂
∂αν Dμν(α)

]
P(α) . (6.111)

This equation is sufficient to imply (6.110) but is not a unique equation because the
Λ(α) are not linearly independent. The Fokker–Planck equation has the same form
as that derived using the diagonal P representation with α∗ replaced by β .

It should be noted that for the complex P representation, Aμ(α) and Dμν(α)
are always analytic in (α), hence if P(α) is initially analytic (6.111) preserves this
analyticity as time develops.

b) Positive P Representation

The operator identities for the positive P representation are the same as (6.109) for
the complex P representation. In addition, using the analyticity of Λ(α, β ) and
noting that if

α = αx + iαy, β = βx + iβy,

then
∂

∂α
Λ(α) =

∂
∂αx

Λ(α) =−i
∂

∂αy
Λ(α)

and
∂

∂β
Λ(α) =

∂
∂βx

Λ(α) =−i
∂

∂βy
Λ(α) . (6.112)

Thus in addition to (6.109) we also have

a†ρ ↔
(

β − ∂
∂αx

)
P(α)↔

(
β + i

∂
∂αy

)
P(α),

ρa↔
(

α− ∂
∂βx

)
P(α)↔

(
α + i

∂
∂βy

)
P(α) . (6.113)

The positive P representation may be used to give a Fokker–Planck equation with a
positive definite diffusion matrix. We shall demonstrate this in the following.



6.2 Equivalent c-Number Equations 111

We assume that the same equation (6.64) is being considered but with a positive P
representation. The symmetric diffusion matrix can always be factorized in the form

D(α) = B(α)BT(α).

We now write

A(α) = Ax(α)+ iAy(α) , (6.114)

B(α) = Bx(α)+ iBy(α) , (6.115)

where Ax, Ay, Bx, By are real. We then find that the master equation yields

∂ρ
∂ t

=
∫∫

d2α d2β Λ(α)(∂P(α)/∂ t)

=
∫∫

P(α)[Aμ
x (α)∂ x

μ + Aμ
y (α)∂ y

μ +
1
2
(Bμσ

x Bνσ
x ∂ x

μ∂ x
ν + Bμσ

y Bνσ
y ∂ y

μ∂ y
ν

+ 2Bμσ
x Bνσ

y ∂ x
μ∂ y

ν )]Λ(α)d2α d2β . (6.116)

Here we have, for notational simplicity, written ∂/∂αμ
x = ∂ x

μ etc., and have used the
analyticity of Λ(α) to make either of the replacements

∂/∂αμ ↔ ∂ x
μ ↔−i∂ y

μ (6.117)

in such a way as to yield (6.116). Now, provided partial integration is permissible,
we deduce the Fokker–Planck equation:

∂P(α)/∂ t = [−∂ x
μAμ

x (α)− ∂ y
μAμ

y (α)+
1
2
[∂ x

μ∂ x
ν Bμσ

x (α)Bνσ
x (α)

+ 2∂ x
μ∂ y

νBμσ
x (α)Bνσ

y (α)+ ∂ y
μ∂ y

ν Bμσ
y (α)Bνσ

y (α)]} P(α) (6.118)

Again, this is not a unique time-development equation but (6.116) is a consequence
of (6.118).

However, the Fokker–Planck equation (6.118) now possesses a positive semidef-
inite diffusion matrix in a four-dimensional space whose vectors are

(α(1)
x ,α(2)

x ,α(1)
y ,α(2)

y )≡ (αx,βx,αy,βy . (6.119)

We find the drift vector is

A (α)≡ (A(1)
x (α),A(2)

x (α),A(1)
y (α),A(2)

y (α)) , (6.120)

and the diffusion matrix is

D(α) =

⎛
⎝BxBT

x BxBT
y

ByBT
x ByBT

y

⎞
⎠(α)≡B(α)BT(α) (6.121)
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where

B(α) =
(

Bx 0
By 0

)
(α) (6.122)

and D is thus explicitly positive semidefinite.

6.3 Stochastic Differential Equations

A Fokker–Planck equation of the form

∂P
∂ t

=−∑
i

∂
∂xi

Ai(x, t)P+
1
2 ∑

i j

∂
∂xi

∂
∂x j

[B(x, t)BT(x, t)]i jP (6.123)

may be written in a completely equivalent form as

dx
dt

= A(x, t)+ B(x)E(t) (6.124)

where E(t) are fluctuating forces with zero mean and δ correlated in time

〈Ei(t)E j(t ′)〉= δi jδ (t− t ′) . (6.125)

We have written (6.124) in the form of a Langevin equation. The relationship be-
tween (6.123 and 6.124) may be derived more rigorously in terms of stochastic dif-
ferential equations where Ito’s rules are used. However, the relation quoted in (6.123
and 6.124) is sufficient for our use. The reader is referred to the texts C.W. Gardiner
for a complete discourse on stochastic differential equations and their applications
to quantum noise problems.

We shall illustrate the use of the stochastic differential equation for a particle
undergoing damping and diffusion in one dimension. This motion is described by
the Fokker–Planck equation

∂P(x)
∂ t

= κ
∂
∂x

[xP(x)]+
D
2

∂ 2

∂x2 P(x) (6.126)

where κ is the damping coefficient and D is the diffusion coefficient. This equa-
tion describes an Ornstein–Uhlenbeck process. It may, for example, describe the
Brownian motion of a particle under the random influence of collisions from many
particles in thermal motion where the variable x represents the particle’s velocity.

The Langevin equation equivalent to the Fokker–Planck Equation (6.126) is

ẋ =−κx +
√

DE(t) (6.127)

where
〈E(t)E(t ′)〉= δ (t− t ′) .
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The solution to this equation is

x(t) = x(0)e−κt +
√

D

t∫
0

e−κ(t−t′)E(t ′)dt ′ . (6.128)

If the initial condition is deterministic or Gaussian distributed, then x(t) is clearly
Gaussian, with mean and variance

〈x(t)〉= 〈x(0)〉e−κt , (6.129)

Var[x(t)] =

〈⎧⎨
⎩[x(0)−〈x(0)〉]e−κt +

√
D

t∫
0

e−κ(t−t′)E(t ′)dt ′

⎫⎬
⎭

2〉
. (6.130)

Assuming the initial condition is independent of E(t), we may write

Var{x(t)}= Var{x(0)}e−2κt + D

t∫
0

e−2κ(t−t′)dt ′

=
[

Var{x(0)}− D
2κ

]
e−2κt +

D
2κ

. (6.131)

In the steady state

Var{x(t)}=
D
2κ

. (6.132)

The two time correlation function may be calculated directly, as follows

〈x(t),x(s)〉 = 〈x(t)x(s)〉− 〈x(t)〉〈x(s)〉

= Var{x(0)}e−κ(t+s) + D

〈 t∫
0

e−κ(t−t′)E(t ′)dt ′
s∫

0

e−κ(s−s′)E(s′)ds′
〉

= Var{x(0)}e−κ(t+s) + D

min(t,s)∫
0

e−κ(t+s−2t′)dt ′

=
[

Var{x(0)}− D
2κ

]
e−κ(t+s) +

D
2κ

e−κ |t−s| . (6.133)

In the stationary state

〈x(t),x(s)〉 = D
2κ

e−κ |t−s| . (6.134)

We shall now consider the equivalent Langevin equation for the Fokker–Planck
equation for the damped harmonic oscillator. The Fokker–Planck equation for the P
representation is

∂P
∂ t

=
γ
2

(
∂

∂α
α +

∂
∂α∗

α∗
)

P+ γN
∂ 2

∂α ∂α∗
P . (6.135)



114 6 Stochastic Methods

Note that we have set M = 0, as the P representation cannot be used with squeezed
baths since the diffusion matrix is nonpositive definite. In such cases the Q-function
could be used.

Equation (6.135) is an example of an Ornstein–Uhlenbeck process. The diffusion
matrix is

D = γN

(
0 1
1 0

)
(6.136)

which may be factored as
D = BBT

where

B =
(

γN
2

)1/2( i 1
−i 1

)
. (6.137)

Thus the stochastic differential equations become

d
dt

(
α
α∗

)
=
( −γ

2 0
0 −γ

2

)(
α
α∗

)
+

√
γN
2

(
i 1
−i 1

)(
η1(t)
η2(t)

)
(6.138)

where η1(t) and η2(t) are independent stochastic forces which satisfy

〈ηi(t)η j(t ′)〉= δi jδ (t− t ′) . (6.139)

Equation (6.138) may be written

dα
dt

=− γ
2

α +
√

γNη(t),

dα∗

dt
=− γ

2
α +

√
γNη∗(t) (6.140)

where

η(t)≡ 1√
2
[η2(t)+ iη1(t)]

is a complex stochastic force term which satisfies

〈η(t)η∗(t ′)〉= δ (t− t ′) .

An alternative factorisation is

B =
(

γN
2

)1/2( eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)
. (6.141)

In this case
dα
dt

=− γ
2

α +
√

γNη̃ (6.142)

where

η̃ =
1√
2
(η2eiπ/4 + η1e−iπ/4 . (6.143)

One easily verifies that 〈η̃η̃∗〉= δ (t− t ′).
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The solutions derived from (6.140) are

〈α(t)〉= 〈α(0)〉exp
(
− γ

2
t
)

, (6.144)

〈α∗(t)α(t)〉= 〈α∗(0)α(0)〉e−γt + N(1− e−γt),

〈α2〉ss = 〈α∗2〉ss = 0,

〈αα∗〉ss = 〈α∗α〉ss = N , (6.145)

where ss denotes steady state.

6.3.1 Use of the Positive P Representation

The relationship (6.123 and 6.124) between the Fokker–Planck equation and the
stochastic differential equation only holds if the diffusion matrix

D(x, t) = B(x, t)BT(x, t)

is positive semidefinite. In some cases use of the Glauber–Sudarshan P representa-
tion will result in Fokker–Planck equations with a non-positive semi-definite diffu-
sion matrix, for example, if the bath is squeezed. In such cases use of the positive
P representation will give a Fokker–Planck equation with a positive semi-definite
diffusion matrix

D(α) = B(α)BT(α) (6.146)

where

B(α) =
(

Bx 0
By 0

)

and α = (α, β ).
The corresponding stochastic differential equations may be written

d
dt

(
αx

αy

)
=
(

Ax(α)
Ay(α)

)
+
(

Bx(α)E(t)
By(α)E(t)

)
(6.147)

on recombining real and imaginary parts

dα
dt

= A(α)+ B(α)E(t) . (6.148)

Apart from the substitution α∗ → β , (6.148) is just the stochastic differential equa-
tion which would be obtained by using the Glauber–Sudarshan P representation, and
naively converting the Fokker–Planck equation with a non-positive definite diffusion
matrix into a stochastic differential equation. In the above derivation the two formal
variables (α, α∗) have been replaced by variables in the complex plane (α, β )
that are allowed to fluctuate independently. The use of the positive P representation
justifies this procedure.
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6.4 Linear Processes with Constant Diffusion

For linear processes with constant diffusion coefficients a number of useful results
may be proven. These may be derived from the Fokker–Planck equation using the
solution (6.78) or the equivalent Langevin equation. We shall quote the results here.
The Langevin equations are a useful starting point since for nonlinear processes
approximate results may be obtained by a linearization procedure. We consider a
process described by the Langevin equation

dx(t)
dt

=−Ax(t)+ BE(t) (6.149)

where A and B are constant matrices. This describes a multivariate Ornstein–
Uhlenbeck process. Suppose AAT = ATA, then we can find an orthogonal matrix
S such that

SST = 1

SAST = SATST = Diag{λ1,λ2 . . .λn} . (6.150)

The two time correlation function is given by

〈x(t),xT(s)〉 = STG(t,s)S

where

[G(t,s)]i j =
(SBBTST)i j

λi + λ j
(e−λi|t−s| − e−λit−λ j s) . (6.151)

In the stationary state the second term in the parentheses is zero and the correlation
is only a function of the difference, τ ≡ t− s.

Let us define the stationary covariance matrix σ by

σ = 〈xss(t), xT
ss(t)〉 . (6.152)

Then by setting dx(t)/dt = 0 in (6.149) we find that σ obeys the equation

Aσ + σAT = BBT . (6.153)

In the case of a two dimensional problem it may be shown that

σ =
(Det A)BBT +[A− (Tr A)I]BBT[A− (Tr A)I]T

2(Tr A)(Det A)
. (6.154)

The two time correlation function in the steady state may be shown to obey the
same time development equation as the mean. That is

d
dτ

[Gss(τ)] =−AGss(τ) . (6.155)
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The computation of Gss(τ), therefore requires the knowledge of Gss(0) = σ and the
time development equation of the mean.

It is often of more interest to view the noise in the frequency domain. We are thus
lead to define the noise spectrum by,

S(ω) =
1

2π

∞∫
−∞

e−iωτ Gss(τ)dτ . (6.156)

Using (6.155 and 6.153) we find

S(ω) =
1

2π
(A + iω)−1BBT(AT− iω)−1 . (6.157)

6.5 Two Time Correlation Functions
in Quantum Markov Processes

We shall now demonstrate how two time correlation functions for operators may be
derived from the master equation or the equivalent Fokker–Planck equation.

Consider a system coupled to a reservoir. W (t) is the total density operator in the
Schrödinger picture and H is the Hamiltonian, A and B are operators for variables
to be measured, then

〈A(t)〉= Tr{AW(t)} (6.158)

and
〈A(t + τ)B(t)〉= Tr

[
eiH τ/h̄Ae−iH τ/h̄BW (t)

]
(6.159)

while this is exact it is not particularly useful. For a system interacting with a heat
bath in the Markov approximation we wish to express everything in terms of the
Liouvillian for the reduced system in which heat bath variables have been traced out.

Supposing A and B are operators in the system space, then

〈A(t + τ)B(t)〉= Trs{A TrR[e−iH τ/h̄BW (t)eiH τ/h̄]} . (6.160)

The equation of motion for the term

X(τ,t) = e−iH τ/h̄BW (t)eiH τ/h̄ (6.161)

in terms of τ is

ih̄
∂

∂τ
X(τ,t) = [H , X(τ,t)] . (6.162)

Proceeding in exactly the same way as for the derivation of the Markovian master
equation (6.37) which may be written in the form

∂
∂ t

ρ(t) = Lρ(t) (6.163)
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where L is a Liouvillian operator, where ρ = TrR{W} is the reduced density operator
for the system, we may derive the equation

∂
∂τ

[TrR{X(τ,t)}] = L{TrR X(τ,t)} (6.164)

so that the two time correlation function may be expressed as

〈A(t + τ)B(t)〉= Trs{AeLτBρ(t)} . (6.165)

6.5.1 Quantum Regression Theorem

In cases where the master equation gives linear equations for the mean, we can de-
velop a quantum regression theorem, similar to that for ordinary Markov processes.
This result was first derived by Lax [4].

Suppose for a certain set of operators Yi, the master equation can be shown to
yield, for any initial ρ

∂
∂ t
〈Yi(t)〉= ∑Gi j(t)〈Yj(t)〉 . (6.166)

Then we assert that

∂
∂ t
〈Yi(t + τ)Yl(t)〉= ∑Gi j(τ)〈Yj(t + τ)Yl(t)〉 . (6.167)

For
〈Yi(t + τ)Yl(t)〉= Trs{Yie

LτYlρ(t)} (6.168)

the right-hand side is an average of Yi at time t + τ, with the choice of initial density
matrix

ρinit = Ylρ(t) . (6.169)

Since by hypothesis, any initial ρ is permitted and the equation is linear, we may
generate any initial condition whatsoever. Hence, choosing ρinit as defined in (6.169)
the hypothesis (6.166) yields the result (6.167) which is the quantum regression
theorem.

6.6 Application to Systems with a P Representation

For systems where a P representation exists the following results for normally or-
dered time correlation functions may be proved

G(1)(t,τ) = 〈a†(t + τ)a(t)〉= 〈α∗(t + τ)α(t)〉 , (6.170)

G(2)(t,τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉,
= 〈|α(t + τ)|2|α(t)|2〉 . (6.171)
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In these cases the measured correlation functions correspond to the same correla-
tion function for the variables in the P representation. For non-normally ordered
correlation functions the result is not as simple.

6.7 Stochastic Unravellings

The master equation describes the dynamics of a subsystem by averaging over
(tracing out) the properties of the larger “bath” to which it is coupled. Solving the
master equation typically results in a mixed state. Any mixed state admits infinitely
many decompositions into convex combinations of (non-orthogonal) pure states. In
a stochastic unravelling of a master equation we represent the solution at any time as
a convex combination of pure states each evolving under a stochastic Schrödinger
equation such that if we average over the noise we obtain the solution to the orig-
inal master equation. This approach leads to a powerful numerical simulation tool
as much less memory is required to store a pure quantum state at each time step.
In Chap. 15, we give an alternative interpretation of an unravelling in terms of con-
ditional states conditioned on a continuously recorded sequence of measurement
results.

Consider a simple harmonic oscillator coupled to a zero temperature heat bath.
The dynamics, in the interaction picture, is given by the master equation, (6.37) with
N = M = 0. Solving this equation over a small time interval dt we can write

ρ(t + dt) =
[
ρ(t)− γ

2
(a†aρ(t)+ ρ(t)a†a)dt

]
+ γaρ(t)a†dt (6.172)

We can think of this as describing photons leaking from a single mode cavity at
Poisson distributed times. Suppose there were exactly n photons in the cavity at
time t so that ρ(t) = |n〉〈n|. Then (6.172) would become

ρ(t + dt) = (1− γndt)|n〉〈n|+ γndt|n−1〉〈n−1| (6.173)

We can think of this as follows. In a small increment of time dt, two events are
possible: either a single photon is lost or no photon is lost. If a photon is lost, the
state of the field has one less photon so that it changes from |n〉 to |n− 1〉 and
this event will occur with probability γndt. This form results from the last term of
(6.172). On the other hand, if no photon is lost the state is unchanged, and this
will occur with probability 1− γndt, which arises from the first term in (6.172).
Thus (6.172) describes a statistical mixture of the two events that can occur in a
small time step dt: the first term in square brackets describes the change in the state
of the cavity field given that no photon is lost in time interval dt, while the second
term describes what happens to the state of the field if one photon is lost in a time
interval dt.

If this interpretation is correct it suggests an answer to conditional questions such
as: if no photon is lost from time t to t +dt, what is the conditional state of the field?
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In this case we have no contribution from the last term in (6.172) so the conditional
state is the solution to

ρ(t + dt)c =
[ρ(t)c− γ

2 (a†aρ(t)c + ρ(t)ca†a)dt]
Tr[ρ(t)c− γ

2(a†aρ(t)c + ρ(t)ca†a)dt]

≈ ρc(t)− γdt

[
1
2

(
a†aρc(t)+ ρc(t)a†a

)−〈a†a〉c(t)ρc(t)
]

to linear order in dt, where the subscript c is to remind us that we are dealing with a
particular conditional state conditioned on a rather special history of null events and
〈a†a〉c(t) is the conditional average of the photon number in the state ρc(t).

We can now introduce a classical stochastic process, a conditional Poisson pro-
cess, dN(t) which is the number of photons lost in time dt. Clearly

dN(t)2 = dN(t) (6.174)

E [dN(t)] = γ〈a†a〉c(t) (6.175)

where E is an average over the classical stochastic variable. In terms of dN(t) we
can now define a stochastic master equation

dρc(t) = dN(t)G [a]ρc(t)− γdtH [a†a]ρc(t) (6.176)

where we have defined two new super-operators (that map density operators to den-
sity operators),

G [A]ρ =
AρA†

Tr[Aρc†]
−ρ (6.177)

H [A]ρ = Aρ + ρA†−Tr[Aρ + ρA†] (6.178)

for any operator A. Note that if we take the classical ensemble average over the noise
process dN(t) we recover the original unconditional master equation in (6.172). The
solution to (6.176) is the conditional state at time t conditioned on an entire fine-
grained history of jump events (that is to say, the total number of jumps and the time
of each jump event). Denote such a history as the sequence of jump times on the
interval [0,t) as h[t] = {t1,t2, . . . ,tm}. The unconditional state is a sum over all such
histories

ρ(t) = ∑
h[t]

Pr(h[t])ρc(h[t]) (6.179)

where we have explicitly indicated that the conditional state ρc is conditioned on
the history of jump events, h[t] in the time interval of interest and Pr(h[t]) is the
probability for each history. We have unravelled the solution to the master equation
in terms of conditional stochastic events. For a point process as considered here the
sum over histories has an explicit form in terms of time ordered integrals [5]
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ρ(t) =
∞

∑
m=0

∫ t

0
dtm

tm∫
0

· · ·
t1∫

0

S (t− tm)J S (tm− tm−1) . . .J S (t1)ρ(0) (6.180)

where the super operators are defined by

S (t)ρ = e−
γ
2 ta†aρe−

γ
2 ta†a (6.181)

J = γaρa† (6.182)

Clearly the probability of a specific jump history is given by

Pr(h[t]) = Tr[S (t− tm)J S (tm− tm−1) . . .J S (t1)ρ(0)] (6.183)

The form of (6.180) indicates that if we start in a pure state, and have access
to the entire history of photon loss events h[t], the conditional state ρc(h[t]) must
still be a pure state. This implies that we can write a stochastic Schrödinger for the
damped harmonic oscillator:

d|ψc(t)〉=
[

dNc(t)

(
a√〈a†a〉c(t)

−1

)
+ γdt

( 〈a†a〉c(t)
2

− a†a
2

)
− iHdt

]
|ψc(t)〉
(6.184)

where we have now included the possibility of a hamiltonian part to the dynam-
ics. We can show the equivalence between this equation and the stochastic master
equation by considering the Ito-like expansion

d(|ψc(t)〉〈ψc(t)|) = (d|ψc(t)〉)〈ψc(t)|+ |ψc(t)〉(d〈ψc(t)|)+ (d(|ψc(t)〉|)(d〈ψc(t)|)
(6.185)

and retaining all terms to first order in dt, noting that dN2 = dN.
A point process with a large rate parameter γ can be well approximated on a time

scale long compared to γ−1 by a white noise process. This suggests that it must be
possible to unravel the master equation in terms of white noise processes as well as
the point process dN(t). In Chap. 15 we will see that such master equations give the
conditional dynamics conditioned on homodyne and heterodyne measurements on
the field leaving the cavity. Here we simply quote the result and show that averaging
over the classical noise returns us to the unconditioned master equation.

In the case of the real valued Weiner process dW (t) we can write the homodyne
stochastic master equation for a dampled simple as

dρc(t) =−i[H,ρc(t)]dt +D [a]ρc(t)dt + dW(t)H [a]ρc(t) (6.186)

where

D [A]ρ = AρA† +
1
2
(A†Aρ+ ρA†A) (6.187)

and H [a] is given in (6.178)
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In terms of a complex valued white noise process, dW (t) = dW1(t) + idW2(t)
where dWi(t) are independent Winer processes, we can write the heterodyne stochas-
tic master equation

dρc(t) = −i[H,ρc(t)]dt +D [a]ρc(t)dt +
1√
2
(dW1(t)H [a]ρc(t)

+dW2(t)H [−ia])ρc(t) (6.188)

There is a connection between the quantum jump process and the two-time cor-
relation function discussed in Sect. 6.5. We first define a new stochastic process, the
rate or the current, as

i(t) =
dN
dt

(6.189)

This is a rather singular stochastic process, comprised of a series of delta functions
concentrated at the actual jump times. In physical terms this is intended to model
the output of an ideal photon counting detector, with infinite response bandwidth,
that detects every photon that is lost from the cavity. Define the classical current
two-time correlation function

G(τ,t) = E (i(t + τ)i(t)) (6.190)

Given the nature of a Poisson jump process, dN(t) can only take the values 0 or 1,
so it is easy to see that we can write the two-time correlation function in terms of
the conditional probability to get dN(t + τ) = 1 given a jump at time t,

G(τ,t)dt2 = Pr(dN(t + τ) = 1|dN(t) = 1) (6.191)

This conditional probability is given by

Pr(dN(t + τ) = 1|dN(t) = 1) = γ2Tr[a†aeL τ aρ(t)a†]dt2 (6.192)

where eL t is the formal solution to the unconditional master equation evolution
written in terms of the abstract generator L as ρ̇ = L ρ . The two time correlation
function is then given by

G(τ,t) = γ2Tr[a†aeL τ aρ(t)a†] (6.193)

Note that the so-called regression theorem follows directly from the definition of G,

dG(τ,t)
dτ

= L G(τ,t) (6.194)

We usually deal with driven damped harmonic oscillators for which the system
settles into a steady state, emitting photons according to the conditional Poisson
process derived from the steady state solution ρ∞ = limt→∞ ρ(t), so we define the
stationary two-time correlation function for the current as

G(τ) = γ2Tr
[
a†aeL τ aρ∞a†

]
(6.195)
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6.7.1 Simulating Quantum Trajectories

A mixed state for system with a Hilbert space of dimension N requires that we
specify N2 complex matrix elements. On the other hand a pure state requires that
we specify only N complex numbers. For this reason numerically solving the master
equation is more computationally difficult than solving the Schödinger equation.
We can use the unravelling of a master equation in terms of a stochastic Schödinger
equation to make the numerical solution of master equations more tractable. In this
numerical setting, the method of quantum trajectories was independently developed
as the Monte-Carlo wavefunction method [6]. We will illustrate the method using
the jump process.

Suppose the state at time t is |ψ(t)〉. Then in a time interval δ t, sufficiently short
compared to γ−1, the system will evolve to the (unnormalised) state conditioned on
no-jump having occurred,

|ψ̃(t + δ t)〉= e−iHδ t−γa†aδ t/2|ψ(t)〉 (6.196)

To compute this we implement a routine to solve the Schrödinger equation with the
effective non-hermitian Hamiltonian

K = H− i
γ
2

a†a (6.197)

The norm of this state is the probability that no-jump has occurred in the time inter-
val δt,

p0 = 〈ψ̃(t + δ t)|ψ̃(t + δ t)〉 (6.198)

= 1− p (6.199)

where it is easy to see that

p = γδ t〈ψ(t)|a†a|ψ(t)〉 (6.200)

which we understand to be the probability that a jump takes place in this time inter-
val. We need to ensure that p << 1.

Let us now chose a random number r uniformly distributed on the unit interval.
At the end of the time interval, we compare p and r. If p < r (usually the case) we
normalise the state

|ψ(t + δ t)〉= |ψ̃(t + δ t)〉√
p0

(6.201)

and continue the non-hermitian evolution for a further time step. If however p > r,
we implement a quantum jump via

|ψ̃(t + δ t)〉 → |ψ(t + δ t)〉=
√γa|ψ̃(t + δ t)〉

p/δ t
(6.202)
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Based on our previous discussions we see that p/δ t = γ〈ψ(t)|a†a|ψ(t)〉, and the
jump operation is as described by the first term in (6.184). As the simulation pro-
ceeds we accumulate the record of times at which particular jump events occur. That
is to say, we have access to a sample fine grained history of the jump process, h[t].
However we are primarily interested in solving the master equation. We thus run K
trials up to time t, starting from an identical initial state each time, and then form
the mixed state

ρ̄(t) = K−1
k

∑
k=1

|ψk(t)〉 (6.203)

as a uniform average over the K trials. Strictly speaking the probability of each
of the K trials is not uniform, however one can show that for K sufficiently large
ρ̄(t)≈ ρ(t) with a error that scales as K−1/2. In Mølmer et al. [6] more general cases
are discussed including how to simulate non zero temperature master equations or
master equations with multiple jump processes.

Exercises

6.1 The photon number distribution for a laser may be shown to obey the master
equation

d
dt

P(n)=
An

1 + n/ns
P(n−1)− A(n + 1)

1 +(n + 1)/ns
P(n)−γnP(n)+γ(n+1)P(n+1),

where A is related to the gain, ns is the saturation photon number and γ is the
cavity loss rate.
Use detailed balance to show that the steady state solution is

Pss(n) = N

(
Ans
γ

)n

(n + ns)!

where N is a normalisation constant.
6.2 The interaction picture master equation for a damped harmonic oscillator

driven by a resonant linear force is

dρ
dt

= iε[a + a†,ρ ]+
γ
2
(2aρa†−a†aρ−ρa†a) .

Show that the steady state solution is the coherent state |2iε/γ〉.
6.3 A model for phase diffusion of a simple harmonic oscillator is provided by the

master equation
dρ
dt

=−Γ[a†a, [a†a,ρ ]] .

Show that the Q function obeys the Fokker–Planck equation.
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∂Q
∂ t

=
Γ
2

(
∂

∂α
αQ+

∂
∂α∗

α∗Q+ 2
∂ 2

∂α∂α∗
|α|2Q− ∂ 2

∂α2 α2Q− ∂ 2

∂α∗2
α∗2Q

)
.

Thus show that while the mean amplitude decays the energy remains constant.
Using intensity and phase variables α = I1/2eiθ show that the model is simply
a diffusion process for the phase.

6.4 Show that in terms of the quadrature operators X1 = a + a†, X2 = −i(a−a†),
the master equation (6.37) may be written

dρ
dt

=i
γ
8
[X2, {X1, ρ}]− i

γ
8
[X1, {X2, ρ}]

− γ
8

e2r[X1, [X1, ρ ]]− γ
8

e−2r[X2, [X2, ρ ]]

where {,} is an anticommutator and we have taken N = sinh2r, M = sinhr
cosh r for an ideal squeezed bath. Show that the first and second terms de-
scribe damping in X1 and X2 respectively, while the third and fourth terms
describe diffusion in X2 and X1, respectively.

6.5 Show that the homodyne conditional master equation for a driven simple har-
monic oscillator, damped into a zero temperature heat bath, has the same pure
steady state as the unconditional case (Exercise 6.2).

6.6 If a cavity mode starts in a state for which the P-representation is Gaussian,
show that under the conditional dynamics of the homodyne master in (6.15),
the state continues to have a Gaussian P representation
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Chapter 7
Input–Output Formulation of Optical Cavities

Abstract In preceding chapters we have used a master-equation treatment to calcu-
late the photon statistics inside an optical cavity when the internal field is damped.
This approach is based on treating the field external to the cavity, to which the sys-
tem is coupled, as a heat bath. The heat bath is simply a passive system with which
the system gradually comes into equilibrium. In this chapter we will explicitly treat
the heat bath as the external cavity field, our object being to determine the effect of
the intracavity dynamics on the quantum statistics of the output field. Within this
perspective we will also treat the field input to the cavity explicitly. This approach is
necessary in the case of squeezed state generation due to interference effects at the
interface between the intracavity field and the output field.

An input–output formulation is also required if the input field state is specified as
other than simply a vacuum or thermal state. In particular, we will want to discuss
the case of an input squeezed state.

7.1 Cavity Modes

We will consider a single cavity mode interacting with an external multi-mode field.
To being with we will assume the cavity has only one partially transmitting mirror
that couples the intracavity mode to the external field. The geometry of the cav-
ity and the nature of the dielectric interface at the mirror determines which output
modes couple to the intracavity mode. It is usually the case that the emission is
strongly direction. We will assume that the only modes that are excited have the
same plane polarisation and are all propagating in the same direction, which we
take to be the positive x-direction. The positive frequency components of the quan-
tum electric field for these modes are then

E(+)(x,t) = i
∞

∑
n=0

(
h̄ωn

2ε0V

)1/2

bne−iωn(t−x/c) (7.1)

In ignoring all the other modes, we are implicitly assuming that they remain in the
vacuum state.

127
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Let us further assume that all excited modes of this form have frequencies cen-
tered on the cavity resonance frequency and we call this the carrier frequency of
Ω >> 1. Then we can approximate the positive frequency components by

E(+)(x,t) = i

(
h̄Ωn

2ε0Ac

)1/2√ c
L

∞

∑
n=0

bne−iωn(t−x/c) (7.2)

where A is a characteristic transverse area. This operator has dimensions of electric
field. In order to simplify the dimensions we now define a field operator that has di-
mensions of s−1/2. Taking the continuum limit we thus define the positive frequency
operator for modes propagating in the positive x–direction,

b(x,t) = e−iΩ(t−x/c) 1√
2π

∞∫
−∞

dωb(ω)e−iω(t−x/c) (7.3)

where we have made a change of variable ω �→Ω+ω′ and used the fact that Ω >> 1
to set the lower limit of integration to minus infinity, and

[b(ω1),b†(ω2)] = δ (ω1−ω2) (7.4)

In this form the moment n(x,t) = 〈b†(x,t)b(x,t)〉 has units of s−1. This moment
determines the probability per unit time (the count rate) to count a photon at space-
time point (x,t).

Consider now the single side cavity geometry depicted in Fig. 7.1. The field op-
erators at some external position, b(t) = b(x > 0,t)eiΩt and b†(t) = b†(x > 0,t)e−iΩt

can be taken to describe the field, in the interaction picture with frequency Ω. As the
cavity is confined to some region of space, we need to determine how the field out-
side the cavity responds to the presence of the cavity and any matter it may contain.
The interaction Hamiltonian between the cavity field, represented by the harmonic
oscillator annihilation and creation operators a, a†, and the external field in the ro-
tating wave approximation is given by (6.14). Restricting the sum to only the modes
of interest and taking the continuum limit, we can write this as

V (t) = ih̄

∞∫
−∞

dωg(ω)[b(ω)a†−ab†(ω)] (7.5)

Fig. 7.1 A schematic representation of the cavity field and the input and output fields for a single-
sided cavity
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with [a,a†] = 1 and g(ω) is the coupling strength as a function of frequency which
is typically peaked around ω = 0 (which corresponds to ω = Ω in the original non-
rotating frame). In fact g(ω) is the Fourier transform of a spatially varying coupling
constant that describes the local nature of the cavity/field interaction (see [1]). If
the cavity contains matter, the field inside the cavity may acquire some non trivial
dynamics which then forces the external fields to have a time dependence differ-
ent from the free field dynamics. This leads to an explicit time dependence in the
frequency space operators, b(t,ω), in the Heisenberg picture.

We now follow the approach of Collett and Gardiner [1]. The Heisenberg equa-
tion of motion for b(t,ω), in the interaction picture, is

ḃ(t,ω) =−iωb(ω)+ g(ω)a (7.6)

The solution to this equation can be written in two ways depending on weather
we choose to solve in terms of the initial conditions at time t0 < t (the input) or
in terms of the final conditions at times t1 > t, (the output). The two solutions are
respectively

b(t,ω) = e−iω(t−t0)b0(ω)+ g(ω)
t∫

0

e−iω(t−t′)a(t ′)dt ′ (7.7)

where t0 < t and b0(ω) = b(t = t0,ω), and

b(t,ω) = e−iω(t−t1)b1(ω)−g(ω)
t1∫

t

e−iω(t−t′)a(t ′)dt ′ (7.8)

where t < t1 and b1(ω) = b(t = t1,ω). In physical terms b0(ω) and b1(ω) are usually
specified at −∞ and +∞ respectively, that is, for times such that the field is simply
a free field, however here we only require t0 < t < t1.

The cavity field operator obeys the equation

ȧ =− i
h
[HS,a]−

∞∫
−∞

dω g(ω)b(t,ω) (7.9)

where HS is the Hamiltonian for the cavity field alone. In terms of the solution
with initial conditions, (7.7), this equation becomes

ȧ =− i
h̄
[HS,a]−

∞∫
−∞

dω g(ω)e−iω(t−t0)b0(ω)

−
∞∫
−∞

dω g(ω)2

t∫
t0

e−iω(t−t′)a(t ′) (7.10)
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We now assume that g(ω) is independent of frequency over a wide range of fre-
quencies around ω = 0 (that is around ω = Ω in non rotating frame). This is the first
approximation we need to get a Markov quantum stochastic process. Thus we set

g(ω)2 = γ/2π (7.11)

We also define an input field operator by

aIN(t) =− 1
2π

∞∫
−∞

dωe−iω(t−t0)b0(ω) (7.12)

(the minus sign is a phase convention: left-going fields are negative, right-going
fields are positive). Using the relation

∞∫
−∞

dωe−iω(t−t′) = 2πδ (t− t ′) (7.13)

the input field may be shown to satisfy the commutation relations

[aIN(t),a†
IN(t ′) = δ (t− t ′) (7.14)

When (7.13) is achieved as the limit of an integral of a function which goes smoothly
to zero at ±∞ (for example, a Gaussian), the following result also holds

t∫
t0

f (t ′)δ(t− t ′)dt ′ =
t1∫

t

f (t ′)δ(t− t ′)dt ′ =
1
2

f (t), (t0 < t < t1) (7.15)

Interchanging the order of time and frequency integration in the last term in (7.10)
and using (7.15) gives

ȧ(t) =− i
h̄
[a(t),HSYS]− γ

2
a(t)+

√
γaIN(t) (7.16)

Equation (7.16) is a quantum stochastic differential equation (qsde) for the intra-
cavity field, a(t). The quantum noise term appears explicitly as the input field to the
cavity.

In a similar manner we may substitute the solution in terms of final conditions,
(7.8) into (7.10) to obtain the time-reversed qsde as

ȧ(t) =− i
h̄
[a(t),HSYS]+

γ
2

a(t)−√γaIN(t) (7.17)

where we define the output field operator as
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aOUT(t) =
1√
2π

∞∫
−∞

dωe−iω(t−t1)b1(ω) (7.18)

(Note that the phase convention between left going and right going external fields re-
quired for the boundary condition has been explicitly incorporated in the definitions
of aIN, aOUT). The input and output fields are then seen to be related by

aIN(t)+ aOUT(t) =
√

γa(t) (7.19)

This represents a boundary condition relating each of the far field amplitudes outside
the cavity to the internal cavity field. Interference terms between the input and the
cavity field may contribute to the observed moments when measurements are made
on aOUT.

7.2 Linear Systems

For many systems of interest the Heisenberg equations of motion are linear and may
be written in the form

d
dt

a(t) = Aa(t)− γ
2

a(t)+
√

γaIN(t) , (7.20)

where

a(t) =
(

a(t)
a†(t)

)
, (7.21)

aIN(t) =
(

aIN(t)
a†

IN(t)

)
, (7.22)

Define the Fourier components of the intracavity field by

a(t) =
1√
2π

∞∫
−∞

e−iω(t−t0)a(ω)dω (7.23)

and a frequency component vector

a(ω) =
(

a(ω)
a†(ω)

)
(7.24)

where a†(ω) is the Fourier transform of a†(t).
The equations of motion become

[
A+

(
iω− γ

2

)
1
]

a(ω) =−√γaIN(ω) . (7.25)
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However, we may use (7.18) to eliminate the internal modes to obtain

aOUT(ω) =−
[
A+

(
iω +

γ
2

)
1
][

A+
(

iω− γ
2

)
1
]−1

aIN(ω) . (7.26)

To illustrate the use of this result we shall apply it to the case of an empty one-sided
cavity. In this case the only source of loss in the cavity is through the mirror which
couples the input and output fields. The system Hamiltonian is

HSYS = h̄ω0a†a .

Thus

A =
(−iω0 0

0 iω0

)
. (7.27)

Equation (7.26) then gives

aOUT(ω) =
γ
2 + i(ω−ω0)
γ
2 − i(ω−ω0)

aIN(ω) . (7.28)

Thus there is a frequency dependent phase shift between the output and input. The
relationship between the input and the internal field is

a(ω) =
√γ

γ
2 − i(ω−ω0)

aIN(ω) , (7.29)

which leads to a Lorentzian of width γ/2 for the intensity transmission function.

7.3 Two-Sided Cavity

A two-sided cavity has two partially transparent mirrors with associated loss coef-
ficients γ1 and γ2, as shown in Fig. 7.2. In this case there are two input ports and
two output ports. The equation of motion for the internal field is then given by an
obvious generalisation as

da(t)
dt

=−iω0a(t)− 1
2
(γ1 + γ2)a(t)+

√
γ1aIN(t)+

√
γ2bIN(t) . (7.30)

Fig. 7.2 A schematic representation of the cavity field and the input and output fields for a
double-sided cavity
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The relationship between the internal and input field frequency components for an
empty cavity is then

a(ω) =
√γ1aIN(ω)+

√γ2bIN(ω)( γ1+γ2
2

)− i(ω−ω0)
. (7.31)

The relationship between the input and output modes may be found using the bound-
ary conditions at each mirror, see (7.19),

aOUT(t)+ aIN(t) =
√

γ1a(t) , (7.32a)

bOUT(t)+ bIN(t) =
√

γ2a(t) . (7.32b)

We find

aOUT(ω) =

[ γ1−γ2
2 + i(ω−ω0)

]
aIN(ω)+

√γ1γ2bIN(ω)
γ1+γ2

2 − i(ω−ω0)
(7.33)

For equally reflecting mirrors γ1 = γ2 = γ this expression simplifies to

aOUT(ω) =
i(ω−ω0)aIN(ω)+ γbIN(ω)

γ− i(ω−ω0)
. (7.34)

Near to resonance this is approximately a through pass Lorentzian filter

aOUT(ω)≈ γbIN(ω)
γ− i(ω−ω0)

, (7.35)

This is only an approximate result, the neglected terms are needed to preserve
the commutation relations. Away from resonance there is an increasing amount of
backscatter. In the limit |ω−ω0| � γ the field is completely reflected

aOUT(ω) =−aIN(ω) . (7.36)

Before going on to consider interactions within the cavity we shall derive some
general relations connecting the two time correlation functions inside and outside
the cavity.

7.4 Two Time Correlation Functions

Integrating (7.7) over ω , and using (7.13) gives

aIN(t) =
√γ
2

a(t)− 1√
2π

∞∫
−∞

dωb(ω ,t) . (7.37)
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Let c(t) be any system operator. Then

[c(t),
√

γaIN(t)] =
γ
2
[c(t),a(t)] . (7.38)

Now since c(t) can only be a function of aIN(t ′) for earlier times t ′ < t and the input
field operators must commute at different times we have

[c(t),
√

γaIN(t ′)] = 0, t ′ > t . (7.39)

Similarly

[c(t),
√

γaOUT(t ′)] = 0, t ′ < t . (7.40)

From (7.40 and 7.18) we may show that

[c(t),
√

γaIN(t ′)] = γ[c(t),a(t)], t ′ < t . (7.41)

Combining (7.38–7.41) we then have

[c(t),
√

γaIN(t ′)] = γ0(t− t ′)[c(t),a(t ′)] , (7.42)

where θ (t) is the step function

θ (t) =

⎧⎪⎨
⎪⎩

1 t > 0,
1
2 t = 0,

0 t < 0.

(7.43)

The commutator for the output field may now be calculated to be

[aOUT(t),a†
OUT(t ′)] = [aIN(t),a†

IN(t ′)] (7.44)

as required.
For the case of a coherent or vacuum input it is now possible to express vari-

ances of the output field entirely in terms of those of the internal system. For
an input field of this type all moments of the form 〈a†

IN(t)aIN(t ′)〉, 〈a(t)aIN(t ′)〉,
〈a†(t)aIN(t ′)〉, 〈a†

IN(t)a(t ′)〉, and 〈a†
IN(t)a†(t ′)〉 will factorise. Using (7.18) we find

〈a†
OUT(t),aOUT(t ′)〉= γ〈a†(t),a(t ′)〉 , (7.45)

where
〈U, V 〉 ≡ 〈U V 〉− 〈U〉〈V〉 . (7.46)

In this case there is a direct relationship between the two time correlation of the
output field and the internal field. Consider now the phase dependent two time cor-
relation function
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〈aOUT(t),aOUT(t ′)〉= 〈aIN(t)−√γa(t),aIN(t ′)−√γa(t ′)〉
= γ〈a(t),a(t ′)〉−√γ〈[aIN(t ′),a(t)]〉
= γ〈a(t),a(t ′)〉+ γθ (t ′ − t)〈[a(t ′),a(t)]〉
= γ〈a(max(t,t ′)),a(min(t,t ′))〉 . (7.47)

In this case the two time correlation functions of the output field are related to the
time ordered two time correlation functions of the cavity field.

These results mean that the usual spectrum of the output field, as given by the
Fourier transform of (7.45), will be identical to the spectrum of the cavity field. The
photon statistics of the output field will also be the same as the intracavity field.
Where a difference will arise, is in phase-sensitive spectrum such as in squeezing
experiments.

7.5 Spectrum of Squeezing

The output field from the cavity is a multi mode field. Phase-dependent properties
of this field are measured by mixing the field, on a beam splitter, with a known
coherent field – the local oscillator, as discussed in Sect. 3.8. The resulting field
may then be directed to a photodetector and the measured photocurrent directed to
various devices such as a noise-power spectrum analyser to produce a spectrum,
S(ω). If we write the signal field as aout(t) and the local oscillator is aLO(t), the
average photo current is proportional to

i(t) = (1−η)〈a†
LO(t)aLO(t)〉+

√
η(1−η)〈aOUT(t)a†

LO(t)+ a†
OUT(t)aLO(t)〉

+η〈a†
OUT(t)aOUT(t)〉 (7.48)

If (1−η)〈a†
LO(t)aLO(t)〉 >> η〈a†

OUT(t)aOUT(t)〉, we can neglect the last term in
(7.48). If the local oscillator is in a coherent state 〈aLO(t)〉 = |β |eiθ e−iΩt , then
not only the average current, but all its moments are determined by the quantum
statistics of the quadrature phase operator

XOUT
θ = aOUTe−i(θ−Ωt) + a†

OUTe−i(θ−Ωt) (7.49)

In particular, the noise power spectrum of the photocurrent is given by

S(ω,θ) =
∫ ∞

−∞
dt e−iωt〈: XOUT

θ (t),XOUT
θ (0) :〉 (7.50)

where: indicates normal ordering. The combination aOUTeiΩt is simply the defini-
tion of the output field in the interaction picture defined at frequency Ω. Using (7.47)
and (7.49) this may be written in terms of the intracavity field as
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S(ω,θ) = γ
∫ ∞

−∞
dt e−iωtT 〈: Xθ(t),Xθ(0) :〉 (7.51)

where T denotes time-ordering and Xθ(t) intracavity quadrature phase operator in
an interaction picture at frequency, Ω, defined by the local oscillator frequency,

Xθ(t) = a(t)e−iθ + a†(t)eiθ (7.52)

Conventionally we define the in-phase and quadrature-phase operators as X1 =
Xθ=0, X2 = Xθ=π/2.

7.6 Parametric Oscillator

We shall now proceed to calculate the squeezing spectrum from the output of a
parametric oscillator. Below threshold the equations for the parametric oscillator
are linear and hence we can directly apply the linear operator techniques. When
the equations are nonlinear such as for the parametric oscillator above threshold,
then linearization procedures must be used. One procedure using the Fokker–Planck
equation is described in Chap. 8.

Below threshold the pump mode of the parametric oscillator may be treated clas-
sically. It can then be described by the Hamiltonian

H = h̄ωa†a +
ih̄
2

(εa†2− ε∗a2)+ aΓ† + a†Γ , (7.53)

where ε = εpχ and εp is the amplitude of the pump, and χ is proportional to the non-
linear susceptibility of the medium. Γ is the reservoir operator representing cavity
losses. We consider here the case of a single ended cavity with loss rate γ1.

The Heisenberg equations of motion for a(t) are linear and given by (7.20) where

A =
( γ1

2 −ε
−ε∗ γ1

2

)
. (7.54)

We can obtain an expression for the Fourier components of the output field
from (7.26)

aOUT(ω) =
1[( γ1

2 − iω
)2−|ε|2

]
{[( γ1

2

)2
+ ω2 + |ε|2

]

×aIN(ω)+ εγ1a†
IN(−ω)

}
. (7.55)

Defining the quadrature phase operators by

2aOUT = eiθ/2(XOUT
1 + iXOUT

2 ) , (7.56)
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where θ is the phase of the pump, we find the following correlations:

〈: XOUT
1 (ω),XOUT

1 (ω ′) :〉= 2γ1|ε|( γ1
2 −|ε|

)2 + ω2
δ (ω + ω ′) , (7.57)

〈: XOUT
2 (ω),XOUT

2 (ω ′) :〉= −2γ1|ε|( γ1
2 + |ε|)2 + ω2

δ (ω + ω ′) , (7.58)

where the input field aIN has been taken to be in the vacuum.
The δ function in (7.57 and 7.58) may be removed by integrating over ω ′ to give

the normally ordered spectrum: SOUT(ω):. The final result for the squeezing spectra
of the quadrature is

SOUT
1 (ω) = 1+ : SOUT

1 (ω) := 1 +
2γ1|ε|( γ1

2 −|ε|
)2 + ω2

, (7.59)

SOUT
2 (ω) = 1+ : SOUT

2 (ω) := 1− 2γ1|ε|( γ1
2 + |ε|)2 + ω2

, (7.60)

These spectra are defined in a frame of frequency Ω so that ω = 0 is on cavity
resonance.

The maximum squeezing occurs at the threshold for parametric oscillation |ε|=
γ1/2 where

SOUT
1 (ω) = 1 +

(γ1

ω

)2
, (7.61)

SOUT
2 (ω) = 1− γ2

1

γ2
1 + ω2

, (7.62)

Thus the squeezing occurs in the X2 quadrature which is π/2 out of phase with the
pump. The light generated in parametric oscillation is therefore said to be phase
squeezed.

In Fig. 7.3 we plot SOUT
2 (ω) at threshold. We see that at ω = 0, that is the cav-

ity resonance, the fluctuations in the X2 quadrature tend to zero. The fluctuations in
the X1 quadrature on the other hand diverge at ω = 0. This is characteristic of crit-
ical fluctuations which diverge at a critical point. In this case however the critical

Fig. 7.3 A plot of the spec-
trum of the squeezed quadra-
ture for a cavity containing a
parametric amplifier with a
classical pump. Solid: single-
sided cavity with γ1 = γ2,
dashed: double-sided cavity
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flucuations are phase dependent. As the fluctuations in one phase are reduced to zero
the fluctuations in the other phase necessarily diverge. This characteristic of good
squeezing near critical points is found in other phase dependent nonlinear optical
systems [2]. This behaviour is in contrast to the threshold for laser oscillation where
the critical fluctuations are random in phase.

7.7 Squeezing in the Total Field

The squeezing in the total field may be found by integrating (7.62) over ω . At thresh-
old we find

STOT
2 =

∫ (
1− γ2

1

γ2
1 + ω2

)
dω =

γ1

2
. (7.63)

The squeezing in the total field is given by the equal time correlation functions

〈a,a〉OUT = γ1〈a,a〉,
〈a,a†〉OUT = γ1〈a,a†〉 . (7.64)

Hence, the squeezing in the internal field is

V (X2) =
1
2

. (7.65)

Thus the internal field mode is 50% squeezed, in agreement with the calculations
of Milburn and Walls [3]. This can be surpassed in the individual frequency compo-
nents of the output field which have 100% squeezing for ω = 0. It is the squeezing
in the individual frequency components of the output field which may be measured
by a spectrum analyser following a homodyne detection scheme.

7.8 Fokker–Planck Equation

We shall now give an alternative method for evaluating the squeezing spectrum. This
converts the operator master equation to a c-number Fokker–Planck equation. This is
a useful technique when the operator equations are nonlinear. Standard linearization
techniques for the fluctuations may be made in the Fokker–Planck equation. We
shall consider applications of this technique to nonlinear systems in Chap. 8.

We shall first demonstrate how time and normally-ordered moments may be cal-
culated directly using the P representation. We consider the following time- and
normally-ordered moment
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T 〈: X1(t)X1(0) :〉=e−2iθ 〈a(t)a(0)〉+ e2iθ〈a†(0)a†(t)〉
+ 〈a†(t)a(0)〉+ 〈a†(0)a(t)〉 . (7.66)

The two-time correlation functions may be evaluated using the P representation
which determines normally-ordered moments. Thus equal time moments of the
c-number variables give the required normally-ordered operator moments. The two
time moments imply precisely the time ordering of the internal operators that are
required to compute the output moments. This can be seen by noting that the evolu-
tion of the system will in general mix a† and a. Hence a(t + τ) contains both a(t)
and a†(t), τ > 0. In a normally-ordered two time product a(t + τ) must therefore
stand to the left of a(t), similarly a†(t + τ) must stand to the right of a†(t). Thus

〈α(t + τ)α(t)〉p = 〈a(t + τ)a(t)〉 , (7.67)

〈α∗(t + τ)α∗(t)〉p = 〈a†(t)a†(t + τ)〉 , (7.68)

where the left-hand side of these equations represent averages of c-number vari-
ables over the P representation. The normally-ordered output correlation matrix de-
fined by

: COUT(τ) :=
(〈aOUT(t + τ),aOUT(t)〉 〈a†

OUT(t),aOUT(t + τ)〉
〈a†

OUT(t + τ),aOUT(t)〉 〈a†
OUT(t + τ),a†

OUT(t)〉
)

(7.69)

is given by

: COUT(τ) : = γ
( 〈α(t + τ),α(t)〉 〈α(t + τ),α∗(t)〉
〈α∗(t + τ),α(t)〉 〈α∗(t + τ),α∗(t)〉

)

≡ γCp(τ) . (7.70)

The two time correlation functions for the output field may be calculated directly
from the correlation functions of the stochastic variables describing the internal field
using the P representation.

For nonlinear optical processes the Fokker–Planck equation for the P function
may have nonlinear drift terms and nonconstant diffusion. In such circumstances
we first linearise the equation about the deterministic steady states, to obtain a linear
Fokker–Planck equation of the form

∂P
∂ t

(α) =
(

∂
∂αi

Aiαi +
1
2

∂ 2

∂αi∂α j
Di j

)
P(α) , (7.71)

where A is the drift matrix, and D is the diffusion matrix. The linearised descrip-
tion is expected to give the correct descriptions away from instabilities in the de-
terministic equations of motion. For fields exhibiting quantum behaviour, such as
squeezing, D is non-positive definite and a Fokker–Planck equation is not defined
for the Glauber–Sudarshan P function. In these cases a Fokker–Planck equation is
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defined for the positive P representation, where α∗ is replaced by α† an independent
complex variable as described in Chap. 6.

The spectral matrix S(ω) is defined as the Fourier transform of Cp(τ). In a lin-
earised analysis it is given by

S(ω) = γ(A+ iωI)−1D(AT − iωI)−1 . (7.72)

The squeezing spectrum for each quadrature phase is then given by

: SOUT
1 (ω) := γ[e−2iθS11(ω)+ e2iθS22(ω)+ S12(ω)+ S21(ω)] (7.73)

: SOUT
2 (ω) := γ[−e−2iθS11(ω)− e2iθS22(ω)+ S12(ω)+ S21(ω)] (7.74)

These spectra are defined in a frame of frequency Ω (the cavity-resonance fre-
quency) so that ω = 0 corresponds to the cavity resonance.

It should be noted that in the above derivation there is only one input field and one
output field, that is, there is only one source of cavity loss. Thus the above results
only apply to a single-ended cavity; one in which losses accrue only at one mirror.

If there are other significant losses from the cavity the γ appearing in (7.60 and
7.61) is not the total loss but only the loss from the mirror through which the output
field of interest is transmitted.

The above procedure enables one to calculate the squeezing in the output field
from an optical cavity, provided the internal field may be described by the linear
Fokker–Planck equation (7.71).

Alternatively the squeezing spectrum for the parametric oscillator may be calcu-
lated using the Fokker–Planck equation. The Fokker–Planck equation for the dis-
tribution P(α) for the system described by the Hamiltonian (7.53) may be derived
using the techniques of Chap. 6.

∂P(α)
∂ t

=−
{(

ε∗
∂

∂α∗
α + ε

∂
∂α

α∗
)

+
γ1

2

(
∂

∂α∗
α∗+

∂
∂α

α
)

+
1
2

[
ε∗

∂ 2

∂α∗2
+ ε

∂ 2

∂α2

]}
P(α) (7.75)

The drift and diffusion matrices are

A =
( γ1

2 −ε
−ε∗ γ1

2

)
, D =

(
ε 0
0 ε∗

)
. (7.76)

Direct application of (7.72–7.74) yields the squeezing spectra given by (7.59 and
7.60).
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Exercises

7.1 Calculate the squeezing spectrum for a degenerate parametric oscillator with
losses γ1 and γ2 at the end mirrors.

7.2 Calculate the squeezing spectrum for a non-degenerate parametric oscillator.
[Hint: Use the quadratures for a two mode system described in (5.49)].
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Chapter 8
Generation and Applications of Squeezed Light

Abstract In this chapter we shall describe how the squeezing spectrum may be cal-
culated for intracavity nonlinear optical processes. We shall confine the examples to
processes described by an effective Hamiltonian where the medium is treated clas-
sically. We are able to extend the treatment o squeezing in the parametric oscillator
to the above threshold regime. In addition, we calculate the squeezing spectrum for
second harmonic generation and dispersive optical bistability. We also consider the
non degenerate parametric oscillator where it is possible to achieve intensity fluctu-
ations below the shot-noise level for the difference in the signal and idle intensities.
Two applications of squeezed light will be discussed: interferometric detection of
gravitational radiation and sub-shot-noise phase measurements.

8.1 Parametric Oscillation and Second Harmonic Generation

We consider the interaction of a light mode at frequency ω1 with its second har-
monic at frequency 2ω1. The nonlinear medium is placed within a Fabry–Perot cav-
ity driven coherently either at frequency 2ω1 (parametric oscillation or frequency
ω1 (second harmonic generation)). We shall begin by including driving fields both
at frequency ω1 and 2ω1 so that both situations may be described within the one
formalism. We write the Hamiltonian as [1]

H = H1 +H2 ,

H1 = �ω1a†
1a1 + 2h̄ω1a†

2a2 + i
h̄κ
2

(a†2
1 a2−a2

1a†
2)+ ih̄(E1a†

1 e−iω1t)

−E∗1a1eiω1t)+ ih̄(E2a†
2e−2iω1t −E∗2a2e2iω1t) ,

H2 = a1Γ†
1 + a†

1Γ1 + a2Γ†
2 + a†

2Γ2 ,

where a1 and a2 are the Boson operators for modes of frequency ω1 and 2ω1, re-
spectively, κ is the coupling constant for the interaction between the two modes and

143
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the spatial mode functions are chosen so that κ is real, Γ1, Γ2 are heat bath operators
which represent cavity losses for the two modes and E1 and E2 are proportional to
the coherent driving field amplitudes.

The master equation for the density operator of the two cavity modes after tracing
out over the reservoirs is

∂ρ
∂ t

=
1
ih̄

[H1, ρ ]+ (L1 + L2)ρ , (8.2)

where

Liρ = γi(2aiρa†
i −a†

i aiρ−ρa†
i ai) ,

and γi are the cavity damping rates of the modes.
This master equation may be converted to a c-number Fokker–Planck equation

in the generalised P representation. The generalised P representation must be used
since the c-number equation would have a non-positive definite diffusion matrix if
the Glauber–Sudarshan P representation were used. The result is

∂
∂ t

P(a) =

{
∂

∂α1
(γ1α1−E1−κα†

1 α2)+
∂

∂α†
1

(γ1α†
1 −E∗1 −κα1α†

2 )

+
∂

∂α2

(
γ2α2−E2 +

κ
2

α2
1

)
+

∂
∂α†

2

(
γ2α†

2 −E∗2 +
κ
2

α†2
1

)

+
1
2

[
∂ 2

∂α2
1

(κα2)+
∂ 2

∂α†2
1

(κα†
2 )

]}
P(a) , (8.3)

where a = [α1, α†
1 , α2, α†

2 ], and we have made the following transformation to the
rotating frames of the driving fields

α1→ α1 exp(−iω1t), α2→ α2 exp(−2iω1t) .

In the generalized P representation α and α† are independent complex variables
and the Fokker–Planck equation has a positive semi-definite diffusion matrix in an
eight-dimensional space. This allows us to define equivalent stochastic differential
equations using the Ito rules

∂
∂ t

(
α1

α†
1

)
=
(

E1 + κα†
1 α2− γ1α1

E∗1 + κα1α†
2 − γ1α†

1

)
+
(

κα2 0
0 κα†

2

)1/2(η1(t)
η†

1 (t)

)
, (8.4)

∂
∂ t

(
α2

α†
2

)
=
(

E2− κ
2 α2

1 − γ2α2

E∗2 − κ
2 α†2

1 − γ2α†
2

)
, (8.5)

where η1(t), η†
1 (t) are delta correlated stochastic forces with zero mean, namely
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〈η1(t)〉= 0

〈η1(t)η1(t
′)〉= δ(t− t ′) (8.6)

〈η1(t)η
†(t ′)〉= 0 .

8.1.1 Semi-Classical Steady States and Stability Analysis

The semi-classical or mean value equations follow directly from (8.4 and 8.5) with
the replacement of α†

i by α∗i .

∂
∂ t

α1 = E1 + κα∗1 α2− γ1α1 , (8.7)

∂α2

∂ t
= E2 +

κ
2

α2
1 − γ2α2 . (8.8)

We shall investigate the steady states of these equations and their stability. The sta-
bility of the steady states may be determined by a linearized analysis for small per-
turbations around the steady state

α1 = α0
1 + δα1 , α2 = α0

2 + δα2 , (8.9)

where α0
1 , α0

2 are the steady-state solutions of (8.7 and 8.8). The linearized equa-
tions for the fluctuations are

∂
∂ t

⎛
⎜⎜⎝

δα1

δα∗1
δα2

δα∗2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
−γ1 κα0

2 κα0
1 0

κα0∗
2 −γ1 0 κα0

1
−κα0∗

1 0 −γ2 0
0 −κα0∗

1 0 −γ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δα1

δα∗1
δα2

δα∗2

⎞
⎟⎟⎠ . (8.10)

The four eigenvalues of these equations are

λ1, λ2 =−1
2
(−|κα0

2 |+ γ1 + γ2)± 1
2
[(−|κα0

2 |+ γ1− γ2)2−4|κα0
1 |2]1/2 ,

λ3, λ4 =−1
2
(|κα0

2 |+ γ1 + γ2)± 1
2
[(|κα0

2 |+ γ1− γ2)2−4|κα0
1 |2]1/2 . (8.11)

The fixed points become unstable when one or more of these eigenvalues has a
positive real part. If a fixed point changes its stability as one of the parameters is
varied we call this a bifurcation. In this problem the nature of bifurcations exhibited
come in many forms including a fixed point to limit cycle transition.

We shall consider the cases of parametric oscillation and second harmonic
generation separately.
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Fig. 8.1 Steady state ampli-
tude of the fundamental mode
versus pump field amplitude
for parametric oscillation,
κ = 1.0, Ec

2 = 4.0

8.1.2 Parametric Oscillation

For parametric oscillation only the mode at frequency 2ω1 is pumped so we set E1 =
0. The stable steady state solutions for the mode amplitudes are below threshold
E2 < Ec

2

α0
1 = 0, α0

2 =
E2

γ2
, (8.12)

above threshold E2 > Ec
2

α0
1 =±

[
2
κ

(E2−Ec
2)
]1/2

, α0
2 =

γ1

κ
, (8.13)

where Ec
2 = γ1γ2/κ , and we have taken E2 to be positive. Thus the system exhibits

behaviour analogous to a second-order phase transition at E2 = Ec
2 where the below-

threshold solution α0
1 = 0 becomes unstable and the system moves onto a new stable

branch. Above threshold there exist two solutions with equal amplitude and opposite
phase. In Fig. 8.1 we plot the amplitude α0

1 versus E2.

8.1.3 Second Harmonic Generation

For second harmonic generation only the cavity mode at frequency ω is pumped
so we set E2 = 0. Equations (8.7 and 8.8) then yield the following equation for the
steady state amplitude of the second harmonic

−2γ2(κα0
2 )3 + 4γ1γ2(κα0

2 )−2γ2
1 γ2(κα0

2 ) = |κE1|2 . (8.14)

This gives a solution for α0
2 which is negative and the intensity |α0

2 |2 is a monoton-
ically increasing, single valued function of |E1|2.

However from the stability analysis we find that the eigenvalues

λ1, λ2→ 0± iω , (8.15)

where ω = [γ2(2γ1 + γ2)]1/2 when the driving field E1 reaches the critical value
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Ec
1 =

1
κ

(2γ1 + γ2)[2γ2(γ1 + γ2)]1/2 . (8.16)

Thus the light modes in the cavity undergo a hard mode transition, where the steady
state given by (8.14) becomes unstable and is replaced by periodic limit cycle be-
haviour. This behaviour is illustrated in Fig. 8.2 which shows the time development
of the mode intensities above the instability point.

8.1.4 Squeezing Spectrum

We shall calculate the squeezing spectrum using a linearized fluctuation analysis
about the steady state solutions [2, 3]. The linearized drift and diffusion matrices for
the Fokker–Planck equation (8.3) are

A =

⎛
⎜⎜⎝

γ1 −ε2 −ε∗1 0
−ε∗2 γ1 0 −ε1

ε1 0 γ2 0
0 ε∗1 0 γ2

⎞
⎟⎟⎠ , (8.17)

D =

⎛
⎜⎜⎝

ε2 0 0 0
0 ε∗2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (8.18)

Fig. 8.2 Self pulsing in second harmonic generation: |α1|2 (light), |α2|2 (heavy) as functions of
time. Numerical solutions of (8.7 and 8.8) with κ = 10.0, γ1 = γ2 = 3.4, ε1 = 20.0, ε2 = 0.0 and
initial conditions α1 = 0.1+0.1i, α2 = 0.0
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where ε2 = κα0
2 , ε1 = κα0

1 , and we have replaced α2 in the diffusion matrix by its
steady state value. We may then use (7.72) to calculate the spectral matrix S(ω).

The results for the squeezing in the amplitude and phase quadratures follow from
(8.17 and 8.18). The squeezing in the low frequency mode (ω1) is

Sout
1±(ω) = 1± 4γ1|ε2|(γ2

2 + ω2)
[γ2(γ1∓|ε2|)+ |ε1|2−ω2]2 + ω2(γ1∓|ε2|+ γ2)2 , (8.19)

where the + and − refer to the unsqueezed and squeezed quadratures, respectively.
The squeezing in the high frequency mode (2ω1) is

Sout
2±(ω) = 1± 4γ2|ε2||ε1|2

[γ2(γ1∓|ε2|)+ |ε1|2−ω2]2 + ω2(γ1∓|ε2|+ γ2)2 , (8.20)

The above results are general for two driving field ε1 and ε2. We now consider the
special cases of parametric oscillation and second harmonic generation.

8.1.5 Parametric Oscillation

For parametric oscillation ε1 = 0 and below threshold the expression for the squeez-
ing spectrum simplifies considerably. The phase quadrature is squeezed with

Sout
1−(ω) = 1− 4γ1|ε2|

(γ1 + |ε2|)2 + ω2 . (8.21)

This is a Lorentzian dip below the vacuum level which as threshold is approached
|ε2| = γ gives Sout

1 − (0) = 0. This is the same result as obtained in Chap. 7 where
the pump mode was treated classically. However, this treatment also allows us to
investigate the above-threshold regime. The squeezing spectrum above threshold
becomes double peaked for

|ε1|2 > γ2
2{[γ2

2 +(γ2 + 2γ1)2]1/2− (γ2 + 2γ1)} . (8.22)

The double-peaked squeezing spectrum is plotted in Fig. 8.3. If the high-
frequency losses from the cavity are insignificant (γ2 � γ1), this splitting occurs
immediately above threshold, with the greatest squeezing being at ω = ±|ε1|. The
value of Sout

1 − (|ε1|) remains close to zero even far above threshold. In Fig. 8.4 we
plot the maximum squeezing obtained as a function of |ε1| for different values of
the ratio of the cavity losses γ2/γ1. Below threshold the squeezing is independent of
this ratio but above threshold the squeezing depends crucially on this ratio. Above
threshold the pump is depleted, and noise from the pump enters the signal field. If
the cavity losses at the pump frequency are significant, then uncorrelated vacuum
fluctuations will feed through into the signal and degrade the squeezing. Thus a low
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Fig. 8.3 The squeezing spec-
trum for parametric oscilla-
tion with γ1 = 2γ2. Solid line:
on threshold with ε2 = γ1.
Dashed line: above threshold
with ε1 = γ2

cavity loss at the pump frequency by comparison with the signal loss is needed to
obtain good squeezing above threshold in the parametric oscillator.

We may also consider the squeezing in the pump mode. Below threshold this
mode is not squeezed. Above threshold the peak squeezing (at ω = 0) increases to
a maximum value of 50% at |ε1| = 2γ1γ2. When |ε1| = 2γ2

1 + 1
2 γ2

2 , we again find a
splitting into a double peak.

8.1.6 Experiments

The first experiment to demonstrate the generation of squeezed light in an optical
parametric oscillator below threshold was been performed by Wu et al. [4]. They
demonstrated reductions in photocurrent noise greater than 60% (4 dB) below the
limit set by the vacuum fluctuations of the field are observed in a balanced ho-
modyne detector. Lam et al. [5] reported 7 dB of measured vacuum squeezing. A
schematic of their experiment is shown in Fig. 8.5. The experiment used a mono-
lithic MgO:LiNbO3 nonlinear crystal as the nonlinear medium. This was pumped
at a wavelength of 532 nm from a second harmonic source (a hemilithic crystal of
MgO:LiNbO3). Squeezed light is generated at 1064nm. The squeezing cavity out-
put coupler is 4% reflective to 532 nm and 95.6% reflective to 1064 nm. The other
end is a high reflector with 99.96% for both wavelengths. The cavity finesse was
F = 136, and a free spectral range FSR = 9GHz. The cavity linewidth was 67 MHz.
The output of the OPO is directed to a pure TEM00 mode cleaning cavity with a

Fig. 8.4 Maximum squeezing
above threshold as a func-
tion of the amplitude of the
fundamental mode |ε1|, for
different values of the cavity
losses γ2/γ1; (a) 0.02, (b) 0.1,
(c) 1.0
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Fig. 8.5 The experimental scheme of Lam et al. for producing vacuum squeezing in an optical
parametric oscillator below threshold. Solid, dashed and dotted lines are the 1,064 nm laser, second
harmonic and vacuum squeezed light beams, respectively. M: mirror, FI: Faraday isolator, PZT:
piezo-electric actuator, DC: dichroic beamsplitter, L: lens, PD: photodetector, (P)BS: (polarizing)
beamsplitter, ′/2: half-wave plate, SHG: second-harmonic generator and MC: mode cleaner cavity

finesse of 5,000 and a line width of 176 kHZ. This allows the squeezing generated
by the OPO to be optimized by tuning the mode cleaner length. The final homodyne
detection used a pair of ETX-500 InGaAs photodiodes with a quantum efficiency of
0.94±0.02 and a 6 mW optical local oscillator. The dark noise of the photodetectors

Fig. 8.6 Quadrature variance of the squeezed vacuum. Trace (a) shows experimental results of the
variance of the squeezed vacuum state as a function of local oscillator phase. The smooth line is
fitted values of a 7.1 dB squeezed vacuum assuming the given experimental efficiencies. In curve
(b) is the standard quantum noise level at −90dB
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from OPO

coherent input

EOM

i(t)

λ gain

Fig. 8.7 An electro-optic feed-forward scheme used by Lam et al. to produce a bright squeezed
state. The electro-optic modulator (EOM) is controlled be the photo-current i(t)

was 10 dB below the measured vacuum quantum noise level and hence the squeezed
vacuum measurement does not require any electronic noise floor correction.

In Fig. 8.6 are the results of Lam et al. At a pump power of around 60± 10%,
they found an optimal vacuum squeezing of more than 7.0±0.2dB.

In some applications it is desirable to have a squeezed stater with a non zero
coherent amplitude, a bright squeezed state. The conventional way to do this would
be to simply mix the squeezed vacuum state produced by the OPO with a coherent
state on a beam splitter (see Exercise 8.1). However the transmitivity of the squeezed
vacuum state must be very close to unity in order not to loose the squeezing. This
means that very little of the coherent light is reflected and the scheme is rather
wasteful of power. Lam et al. also showed two alternative methods to produce a
squeezed state with a significant coherent amplitude. In the first method a small seed
coherent beam was injected into the back face of the OPO. This gave an amplitude
squeezed state with 4 dB of squeezing. The second method was based on electro-
optical feed-forward to transfer the squeezing onto a coherent beam, see Fig. 8.7.
By carefully adjusting the gain on the controlling photon current to the EOM a
bright squeezed beam with squeezing in the amplitude quadrature corresponding to
a reduction of intensity noise of 4db below shot noise.

8.2 Twin Beam Generation and Intensity Correlations

Another second-order process which can produce non-classical states is
non-degenerate down conversion. A pump photon with frequency 2ω creates a
signal and an idler photon each with frequency ω but different polarisations.
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Alternatively the signal and idler may be distinguished by having different frequen-
cies ω1 and ω2, respectively, such that ω1 + ω2 = 2ω . Such a process ensures that
the photon numbers in the signal and idler beams are highly correlated. Although
the intensity of each beam may fluctuate, the fluctuations on the two beams are
identical. This suggests that the intensity difference of the two beams will carry no
fluctuations at all. That is to say, the variance of I1− I2 can be zero. If the process oc-
curs inside a cavity the correlation between the two photons may be lost as photons
escape the cavity. This is true for times short compared to the cavity lifetime. For
long times, however, the correlation is restored; if one waits long enough all photons
will exit the cavity. Consequently the spectrum of fluctuations in the difference of
the intensities in the two beams reduces to zero at zero frequency.

The Hamiltonian describing this process may be written as

HI = ih̄χ(a0a†
1a†

2−a†
0a1a2) , (8.23)

where a0 describes the pump field, while a1 and a2 describe the signal and idler
fields. The pump field is driven by a coherent field external to the cavity with ampli-
tude ε . The damping rates for the three cavity modes a0, a1 and a2 are κ0, κ1 and
κ2, respectively.

Following from the Fokker–Planck equation for the positive P representation we
establish the c-number stochastic differential equations [6]

α̇0 =−κ0α0 + ε− χα1α2 ,

α̇1 =−κ1α1 + χα0α†
2 + R1(t) ,

α̇2 =−κ2α2 + χα0α†
1 + R2(t) . (8.24)

In our treatment we will assume for simplicity that κ1 = κ2 = κ , where the only
non-zero noise correlation functions are

〈R1(t)R2(t ′)〉= χ〈α0〉δ (t− t ′),

〈R†
1(t)R

†
2(t
′)〉= χ〈α†

0 〉δ (t− t ′) . (8.25)

The semi-classical steady state solutions depend on whether the driving field ε is
above or below a critical “threshold” value given by

εthr =
κ0κ
χ

. (8.26)

Above threshold one of the eigenvalues of the drift matrix is zero. This is associated
with a phase instability. To see this we use an amplitude and phase representation:

α j(t) = r j[1 + μ j(t)]e−i(φ j+ψ j(t)) (8.27)

where r j,φ j are the steady state solutions, and μ j(t) and ψ j(t) represent small fluctu-
ations around the steady state. Solving for the steady state below threshold we have
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r1 = r2 = 0, r0 =
|ε|
κ0

, φ0 = φp , (8.28)

where we have used ε = |ε|eiφp, with φp denoting the phase of the coherent pump.
Above threshold

r0 =
κ
χ

, φ0 = φp ,

r1 = r2 =
√

κ0κ
χ

(E−1)1/2 , φ1 + φ2 = φp , (8.29)

with

E =
|ε|
|εthr| . (8.30)

Note that in the above threshold solution only the sum of the signal and idler phases
is defined. No steady state exists for the phase difference. It is the phase difference
variable which is associated with the zero eigenvalue.

We now turn to an analysis of the intensity fluctuations above threshold. The
nonlinear dynamics of (8.24) is approximated by a linear dynamics for intensity
fluctuations about the steady states above threshold. Define the new variables by

ΔI j = α†
j α j− Iss

j , (8.31)

where Iss
j is the steady state intensity above threshold for each of the three modes.

It is more convenient to work with scaled “intensity-sum” and ‘intensity-difference’
variables defined by

ΔIs = κ(ΔI1 + ΔI2), ΔID = κ(ΔI1−ΔI2) , (8.32)

The linear stochastic differential equations are then given by

Δİ0 =−κ0ΔI0−ΔIs , (8.33)

Δİs = 2κκ0(E−1)ΔI0 + Fs(t) , (8.34)

ΔİD =−2κΔID + FD(t) , (8.35)

where the non zero noise correlations are

〈Fs(t)Fs(t ′)〉=−〈FD(t)FD(t ′)〉= 4
κ0κ4

χ2 (E−1)δ (t− t ′) . (8.36)

We are now in a position to calculate the spectrum of fluctuations in the intensity
difference in the signal and idler modes outside the cavity. The equation for the
intensity difference fluctuations may be solved immediately to give

ΔI0(t) = ΔID(0)e−2κt +
t∫

0

dt ′e−2κ(t−t′)FD(t ′) . (8.37)



154 8 Generation and Applications of Squeezed Light

Thus the steady state two-time correlation function is found to be

〈ID(τ) , ID(0)〉= 〈ΔID(τ)ΔID(0)〉= κ0κ3

χ2 (E−1)e−2κτ (8.38)

with 〈A,B〉= 〈AB〉− 〈A〉〈B〉.
The spectrum of fluctuations in the intensity difference field outside the cavity is

defined by

SD(ω) =
∫

dτe−iωτ〈Î1(τ)− Î2(τ), Î1(0)− Î2(0)〉ss , (8.39)

where Î j(t) are the external intensity operators. However, from Chap. 7, we can
relate this operator average to the c-number averages for α j(t) inside the cavity. The
result is

〈Î j(τ), Îk(0)〉= 2δ jkκδ (τ)〈I j(0)〉+ 4κ2〈I j(τ), Ik(0)〉 , (8.40)

where I j ≡ α†
j (t)α j(t). Finally, we write the result directly in terms of the valuables

ΔID(t),

SD(ω) = S0 + 4
∫

dτe−iωτ〈ΔID(τ)ΔID(0)〉 , (8.41)

where

S0 = 2κ(〈I1〉ss + 〈I2〉ss) =
4κ0κ3

χ2 (E−1) . (8.42)

The frequency independent term S0 represents the contribution of the shot-noise
from each beam. Thus to quantify the degree of reduction below the shot-noise
level we define the ‘normalised’ intensity difference spectrum

S̄D(ω)≡ SD(ω)
S0

. (8.43)

Substituting (8.38 and 8.42) into (8.41), and integrating we obtain

S̄D(ω)≡ ω2

ω2 + 4κ2 . (8.44)

This is a simple inverted Lorentzian with a width 2κ . As expected, at zero frequency
there is perfect noise suppression in the intensity difference between the signal and
idler. This result was first obtained by Reynaud et al. [7].

The above results assume no additional cavity losses beyond those correspond-
ing to the (equal) transmitivities at the output mirror. When additional losses are
included the correlation between the signal and idler is no longer perfect as one of
the pair of photons may be lost otherwise than through the output mirror. In that
case there is no longer perfect suppression of quantum noise at zero frequency [8].
The result is shown in Fig. 8.8a. Furthermore, the spectrum of intensity difference
fluctuations is very sensitive to any asymmetry in the loss for each mode [8]. In
Fig. 8.8b we depict the effect of introducing different intracavity absorption rates
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Fig. 8.8 The effect of intracavity absorption on the intensity difference spectrum. (a) A plot of the
normalized spectrum when the total cavity losses for each mode are equal to the total loss from the
pump mode, and greater than the output loss rate κ (solid line). The dashed line shows the perfect
case when the only losses are through the output mirrors. (b) The effect of asymmetrical intracavity
absorption. The total loss for the idler is equal to the idler damping rate but the damping rate for
the signal is only 80% of the total loss for that mode. E = 1.05 solid line, E = 2.0, dashed line. [8]

for each mode. This phenomenon could form the basis of a sub-shot-noise absorp-
tion spectrometer.

The prediction of noise suppression in the differenced intensity has been con-
firmed in the experiment of Heidmann et al. [9]. They used a type II phase-matched
potassium triphosphate, known as KTP, crystal placed inside an optical cavity, thus
forming an Optical Parametric Oscillator (OPO).

The damping constant at the pump frequency was much greater than for the sig-
nal and idler. Above threshold the OPO emits two cross polarised twin beams at ap-
proximately the same frequency. The twin beams are separated by polarising beam
splitters and then focussed on two photodiodes which have quantum efficiencies of
90%. The two photo-currents are amplified and then subtracted with a 180◦ power
combiner. The noise on the resulting difference current is then monitored by a spec-
trum analyser.

A maximum noise reduction of 30%±5% is observed at a frequency of 8 MHz.
The noise reduction is better than 15% from 3 to 13 MHz. The noise reduction is
limited due to other losses inside the OPO and various detector inefficiencies.

Using an α-cut KTP crystal, Gao et al. [10] achieved a noise reduction in the
intensity difference of 88% below the shot noise level, corresponding to a 9.2 dB
reduction. They also showed how such highly correlated intensities could be used
to enhance the signal-to-noise ratio for relative absorption measurements when one
beam passes through an absorber. The improvement was about 7 dB.

The bandwidth of squeezing in cavity experiments is restricted to the cavity band-
width. Single-pass experiments are feasible using the higher intensity possible with
pulsed light. Pulsed twin beams of light have been generated by means of an optical
parametric amplifier that is pumped by the second harmonic of a mode-locked and
Q-switched Nd : YAG laser [11]. While the noise levels of the individual signal and
idler beams exceed their coherent state limits by about 11 dB the correlation is so
strong that the noise in the difference current falls below the quantum limit by more
than 6 dB (75%).
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8.2.1 Second Harmonic Generation

We now consider second harmonic generation setting E2 = 0. For both the second
harmonic and fundamental modes the squeezing increases monotonically as |ε2|
increases from zero to the critical value |ε2| = γ1 + γ2. The squeezing spectrum
splits into two peaks first for the fundamental and then provided γ2

2 > 1
2 γ2

1 for the
second harmonic.

Above the critical point the system exhibits self-sustained oscillations. We plot
the maximum squeezing as a function of the driving field E1 for both the fundamen-
tal and second harmonic in Fig. 8.9 [3].

In both the cases considered the maximum squeezing occurs as an instability
point is approached. This is an example of critical quantum fluctuations which are
asymmetric in the two quadrature phases. It is clear that in order to approach zero
fluctuations in one quadrature the fluctuations in the other must diverge. At the crit-
ical point itself, with the critical frequency being ω2

c = γ2(γ2 + 2γ1) (which is, in
fact, the initial frequency of the hard mode oscillations) we have for the amplitude
quadrature of the fundamental.

SOUT
1+ (ωc) = 1− γ1

γ1 + γ2
, (8.45)

which gives perfect squeezing for γ1� γ2 at ω = ±√2γ1γ2, and for the amplitude
quadrature of the second harmonic

SOUT
2+ (ωc) = 1− γ2

γ1 + γ2
, (8.46)

this gives perfect squeezing for γ2 � γ1 at ω = γ2. The squeezing spectra for the
two modes at the critical point is shown in Fig. 8.10. The fluctuations in the phase
quadrature must tend to infinity, a characteristic of critical fluctuations. We note
that the linearization procedure we have used will break down in the vicinity of
the critical point and in practice the systems will operate some distance from the
critical point.

Fig. 8.9 A plot of the maxi-
mum squeezing versus driv-
ing field amplitude for second
harmonic generation. The
solid line is the fundamental,
the dashed line is the second-
harmonic. γ1 = γ2 = 1.0
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Fig. 8.10 The squeezing
spectrum for the fundamental
and the second harmonic at
the critical point for oscilla-
tion. γ1 = 1.0, (a) γ2 = 0.1,
(b) = γ2 = 10.0

8.2.2 Experiments

The earliest experiments to demonstrate amplitude squeezing in second harmonic
generation were done by Pereira et al. [12] and by Sizman et al. [13]. Both experi-
ments used a crystal of MgO:LiNbO3 and driven by a frequency stabilised Nd:Yag
laser. In second harmonic generation the squeezing appears in the amplitude quadra-
ture so a direct detection scheme can be employed. In the case of Pereira et al. the
nonlinear crystal was inside an optical cavity. They looked for squeezing at the
fundamental frequency. Sensitivity to phase noise in both the pump laser and from
scattering processes in the crystal limited the observed squeezing to 13% reduction
relative to vacuum. Sizman et al. used a monolithic crystal cavity. The end faces of
the crystal have dielectric mirror coatings with a high reflectivity for both the funda-
mental and second harmonic modes. They reported a 40% reduction in the intensity
fluctuations of the second harmonic light. These two schemes used a doubly reso-
nant cavity, i.e. both the fundamental and the second harmonic are resonant with the
cavity. This poses a number of technical difficulties not least of which is maintaining
the double resonance condition for extended periods. Paschotta et al. [14] demon-
strated a singly resonant cavity at the fundamental frequency for generating ampli-
tude squeezed light in the second harmonic mode. Using a MgO:LiNbO3 monolithic
standing-wave cavity they measured 30% noise reduction (1.5 dB) at 532 nm. The
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Fig. 8.11 (a) A typical noise spectrum. Squeezing is apparent above about 12 MHz. (b) Squeezing
as percent of vacuum level at 16 MHz. The experimental results (squares) are corrected for known
inefficiencies. From [14]

results of this experiment are shown in Fig. 8.11. Tsuchida et al. also demonstrated
amplitude-squeezed light in the second harmonic mode at 431 nm in with a KNbO3

crystal, in a singly resonant at the fundamental mode. Noise reduction of 2.4 dB at
7.5 MHz was observed in the second harmonic mode.

The purpose of a cavity is to enhance the pump power and get a sufficiently
large nonlinear response. However it is possible to get squeezing without a cav-
ity. Serkland et al. [15] demonstrated that traveling-wave second-harmonic genera-
tion produces amplitude-squeezed light at both the fundamental and the harmonic
frequencies. The amplitude noise of the transmitted fundamental field was mea-
sured to be 0.8 dB below the shot-noise level, and the generated 0.765-mm harmonic
light was measured to be amplitude squeezed by 0.35 dB. The conversion-efficiency
dependence of the observed squeezing at both wavelengths agrees with theoretical
predictions.

8.3 Applications of Squeezed Light

8.3.1 Interferometric Detection of Gravitational Radiation

Interest in the practical generation of squeezed states of light became significant
when Caves [16] suggested in 1981 that such light might be used to achieve better
sensitivity in the interferometric detection of gravitational radiation. The result of
Caves indicated that while squeezed light would not increase the maximum sen-
sitivity of the device, it would enable maximum sensitivity to be achieved at lower
laser power. Later analyses [17, 18, 19, 20] demonstrated that by an optimum choice
of the phase of the squeezing it is possible to increase the maximum sensitivity of
the interferometer. This result was established by a full nonlinear quantum theory
of the entire interferometer, including the action of the light pressure on the end
mirrors. We shall demonstrate this following the treatment of Pace et al. [20].

A schematic illustration of a laser interferometer for the detection of gravitational
radiation is shown in Fig. 8.12. To understand how the device works we need to



8.3 Applications of Squeezed Light 159

Fig. 8.12 Schematic representation of a laser interferometer for the detection of gravitational
radiation

recall some properties of gravitational radiation. A gravitational wave induces weak
tidal forces, in a plane perpendicular to the direction of propagation. A gravitational
wave passing normal to a circular arrangement of masses would periodically force
the circle into an ellipse [21]. In the case of the interferometer depicted in Fig. 8.12,
the end mirrors of the two cavities are constrained by a weak harmonic potential,
and lie on a circular arc separated by 90◦. Thus, when a gravitational wave passes
orthogonal to the plane of the interferometer, one cavity will be shortened as the
other cavity is lengthened. If the intensity difference of the light leaving each arm
of the interferometer is monitored, the asymmetric detuning of each cavity caused
by the moving end mirrors causes this intensity to be modulated at the frequency of
the gravitational wave.

While this scheme sounds very promising it suffers from a big problem. Even
though gravitational radiation reaching terrestrial detectors is highly classical (many
quanta of excitation) it interacts very weakly with the end mirrors. The relative
change in the length of each cavity is then so small that it is easily lost amid a mul-
titude of noise sources, which must somehow be reduced if any systematic effect
is to be observed. To begin with, it is necessary to isolate the end mirrors from ex-
ternal vibrations and seismic forces. Then one must ensure that the random thermal
motion of the end mirrors is negligible. Ultimately as each end mirror is essentially
an oscillator, there is the zero-point motion to take account of. Quite apart from the
intrinsic noise in the motion of the end mirrors, noise due to the light also limits
the sensitivity of the device. The light noise can be separated into two contribu-
tions. Firstly the measurement we ultimately perform is an intensity measurement
which is limited by shot-noise. In the case of shot-noise, however, the signal-to-
noise ratio scales as the square root of the input power, thus one might attempt
to avoid this noise source by simply raising the input power. Unfortunately, in-
creasing the input power increases the contribution from another source – radiation
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pressure. Individual photons reflecting from the end mirrors cause a random force
large enough to mask the very small movements due to gravitational radiation.

In the light of the above discussion it would seem that trying to detect gravita-
tional radiation in this manner will be hopeless. However, as we now show, a careful
study reveals that while the task is difficult it is achievable and made more so by
the careful use of squeezed light. In this calculation we treat each end mirror as a
damped simple harmonic oscillator subject to zero-point fluctuations and the clas-
sical driving force of the gravitational wave. Thus we assume the thermal motion
has been eliminated. We also include the radiation pressure force and associated
fluctuations in the cavity fields.

To begin we first determine how the intracavity fields determine the inten-
sity difference signal. Denote the intracavities fields by the annihilation operators
ai (i = 1, 2) and the input and output fields for each cavity are represented by ain

i
and aout

i , respectively. Let bin
i and bout

i denote the input and output fields for each
arm of the interferometer. The central beam-splitter (BS in Fig. 8.12) connects the
cavity inputs and outputs to the interferometer inputs and outputs by

ain
1 =

1√
2
(bin

1 + ibin
2 ) , (8.47)

ain
2 =

1√
2
(bin

1 + ibin
2 ) , (8.48)

bout
1 =

1√
2
(aout

1 + iaout
2 eiφ ) , (8.49)

bout
2 =

1√
2
(aout

1 + iaout
2 eiφ ) , (8.50)

where φ is a controlled phase shift inserted in arm 2 of the interferometer to enable
the dc contribution to the output intensity difference to be eliminated.

The measured signal is then represented by the operator

I−(t) = (bout
1 )†bout

1 − (bout
2 )†bout

2

=−i[(aout
2 )†aout

1 e−iφ −h.c.] . (8.51)

Now the relationship between the cavity fields and the respective input and output
fields is given by

aout
i =

√
γai−ain

i (i = 1, 2) , (8.52)

where we assume the damping rate for each cavity, γ , is the same.
We now assume that arm one of the interferometer is driven by a classical co-

herent source with amplitude E/
√γ in units such that the intensity of the input is

measured in photons/second. The scaling γ−1/2 is introduced, for convenience. Then
from (8.47 and 8.48), each cavity is driven with the same amplitude ε/

√γ , where
ε = E/

√
2. That is

〈ain
1 〉= 〈ain

2 〉=
ε√γ

. (8.53)
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As we show below, it is possible to operate the device in such a way that in the
absence of gravitational radiation, a stable deterministic steady state amplitude α0 is
established in each cavity. This steady state is then randomly modulated by fluctua-
tions in the cavity fields and deterministically modulated by the moving end mirrors
of each cavity. Both these effects are of similar magnitude. It thus becomes possible
to linearise the output fields around the stationary states. With this in mind we now
define the fluctuation operators δai and δain

i for each cavity (i = 1, 2)

δai = ai−α0 , (8.54)

δain
i = ain

i −
ε√γ

. (8.55)

Using these definitions, together with (8.47–8.50), in (8.51), the output signal is then
described by the operator

I−(t) =
γα0

2
[δy1(t)− δy2(t)]−

√γα0

2
[δyin

1 (t)− δyin
2 (t)] , (8.56)

where

δyi(t)≡ i(δai− δa†
i ) , (8.57)

δyin
i (t)≡−i[δain

i − (δain
i )†] . (8.58)

We have chosen the arbitrary phase reference so that the input amplitude, and thus
the steady state amplitude α0, is real.

Equation (8.56) indicates that the signal is carried by the phase quadrature not
the amplitude quadrature. Thus we must determine yi(t).

We turn now to a description of the intracavity dynamics. The end mirror is
treated as a quantised simple harmonic oscillator with position and momentum op-
erators (Q, P). The radiation pressure force is proportional to the intracavity photon
number. The total Hamiltonian for the system may then be written [20]

H = h̄Δa†a +
P2

2M
+

MΩ2

2
Q2− h̄

ω0

L
a†aQ+ F(t)Q , (8.59)

where M is the mass of the end mirror, Ω is the oscillator frequency of the end mir-
ror, L is the cavity length, Δ is the cavity detuning, and F(t) is the driving force on
the end mirror due to the gravitational wave. If we assume the acceleration produced
by the gravitational wave is

g(t) = g cos(ωgt) , (8.60)

the force F(t) may be written as

F(t) =−MhLω2
g S(t) (8.61)

where h is defined to be the maximum fractional change in the cavity length, L,
produced by the gravitational wave in the absence of all other forces, and s(t) =
co(ωgt).
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It is convenient to define the dimensionless position q and the momentum vari-
ables p for the mirror, which are the analogue of the quadrature phase operators for
the field,

q =
(

2h̄
MΩ

)1/2

Q , (8.62)

p = (2h̄MΩ)−1/2P . (8.63)

The commutation relations for these new variables is [q, p] = i/2. Thus in the
ground state, the variance in q and p are both equal to 1/4.

The quantum stochastic differential equations for this system may now be written

da
dt

= ε− i(Δ + 2κq)a− γ
2

a +
√

γain , (8.64)

dq
dt

= Ωp− Γ
2

q +
√

Γqin , (8.65)

dp
dt

=−Ωq−κa†a−κs(t)− Γ
2

p +
√

Γpin , (8.66)

where

κ ≡ −ω0

L

(
h̄

2MΩ

)1/2

, (8.67)

k =−hLω2
g

(
M

2h̄Ω

)1/2

, (8.68)

and γ/2 is the damping rate for the intracavity field, while Γ/2 is the damping rate
for the end mirrors. Note that the form of the stochastic equation for the mirror
is that for a zero-temperature, under-damped oscillator and will thus only be valid
provided Γ�Ω.

Let us first consider the corresponding deterministic semi-classical equations

α̇ = ε− i(Δ + 2κq)α− γ
2

α , (8.69)

q̇ = Ωp− Γ
2

q , (8.70)

ṗ =−Ωq−κ |α|2− ks(t)− Γ
2

p . (8.71)

These equations represent a pair of nonlinearly coupled harmonically driven
oscillators, and as such are candidates for unstable, chaotic behaviour. However,
the amplitude of the driving, k, is so small that one expects the system to remain
very close to the steady state in the absence of driving. The first step is thus to de-
termine the steady state values, α0, q0 and p0. If we choose Δ such that Δ =−2κq0

(so the cavity is always on resonance), then
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α0 =
2ε
γ

. (8.72)

Of course, this steady state itself may be unstable. To check this we linearise the
undriven dynamics around the steady state. Define the variables

δx(t) = Re{α(t)−α0} , (8.73)

δy(t) = Im{α(t)−α0} , (8.74)

δq(t) = q(t)−q0 , (8.75)

δ p(t) = p(t)− p0 . (8.76)

Then

d
dt

⎛
⎜⎜⎝

δx
δy
δq
δ p

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝
− γ

2 0 0 0

0 − γ
2 −μ 0

0 0 −Γ
2 Ω

−μ 0 −Ω −Γ
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

δx
δy
δq
δ p

⎞
⎟⎟⎠ , (8.77)

where μ = 4κα0 and we have assumed ε and thus α0 are real. The eigenvalues of
the linear dynamics are then found to be (−γ/2, −γ/2, −Γ/2 + iΩ, −Γ/2− iΩ),
so clearly the steady state is stable in the absence of the gravitational wave.

We shall point out the interesting features of (8.77). First we note that the quadra-
ture carrying the coherent excitation (δx) is totally isolated from all other variables.
Thus δx(t) = δx(0)e−γt/2. However, as fluctuations evolve from the steady state
δx(0) = 0, one can completely neglect the variables δx(t) for the deterministic
part of the motion. Secondly we note the mirror position fluctuations δq feed di-
rectly into the field variable δy(t) and thus directly determine the output intensity
difference signal by (8.56). Finally, we note the fluctuations of the in-phase field
variable δx drive the fluctuating momentum of the mirror. This is, of course, the
radiation pressure contribution. However, for the deterministic part of the dynam-
ics δx(t) = 0, as discussed above, so the mirror dynamics is especially simple – a
damped harmonic oscillator. In the presence of the gravitational wave the determin-
istic dynamics for the end mirrors is then

(
δ q̇
δ ṗ

)
=
(−Γ

2 Ω
−Ω −Γ

2

)(
δq
δ p

)
−
(

0
ks(t)

)
, (8.78)

with the initial conditions δq(0) = δ p(0) the solution for δq(t) is

δq(t) = R cos(ωgt + φ) , (8.79)

with

R =
kΩ∣∣Γ

2 + i(ωg−Ω)
∣∣ ∣∣Γ

2 + i(ωg + Ω)
∣∣ , (8.80)

φ = arctan

(
−Γωg

Γ2

4 + Ω2−ω2
g

)
. (8.81)
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Substituting this solution into the equation for δy(t) and solving, again with δy(0) =
0, we find

δy(t) =
−4κα0R∣∣ γ

2 + iωg
∣∣ cos(ωgt + θ + φ) , (8.82)

where

θ = arctan

(
αωg

γ

)
. (8.83)

We have neglected an initial decaying transient. Apart from the phase shifts θ and
φ , the out-of-phase field quadrature follows the displacements of the end mirror
induced by the gravitational wave.

Due to the tidal nature of the gravitational wave if one cavity end mirror expe-
riences a force F(t), the other experiences −F(t). Thus δy1(t) = −δy2(t) and the
mean signal is

〈I−(t)〉=−16κIRcos(ωgt + φ + θ )∣∣ γ
2 + iωg

∣∣ , (8.84)

where the output intensity I is defined by

I = |〈aout
i 〉|2 =

γα2
0

4
. (8.85)

Using the definitions in (8.80, 8.67 and 8.68) we find

〈I−(t)〉= −8hIω0ω2
g cos(ωgt + θ + φ)∣∣ γ

2 + iωg
∣∣ ∣∣Γ

2 + i(ωg−Ω)
∣∣ ∣∣Γ

2 + i(ωg + Ω)
∣∣ (8.86)

and the signal is directly proportional to the mirror displacement h.
Before we consider a noise analysis of the interferometer it is instructive to look

at the frequency components of variable δy(t) by

δy(ω) =
∞∫
−∞

dt eiωtδy(t) . (8.87)

As δy(t) is real we have that δy(t) = δy∗(−ω). This relationship enables us to write

δy(t) =
∞∫

0

dω [δy(ω)e−iωt + δy(ω)∗eiωt ] , (8.88)

thus distinguishing positive and negative frequency components. Inspection of
(8.84) immediately gives that

δy(ω) =
−2κα0Re−i(θ+φ)∣∣ γ

2 + iωg
∣∣ δ (ω−ωg) . (8.89)

Thus
|〈I−(ω)〉|= hS(ωg)δ (ω−ωg) , (8.90)
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where

S(ωg) =
8hIω0ω2

g∣∣ γ
2 + iωg

∣∣ ∣∣Γ
2 + i(ωg−ω)

∣∣ ∣∣Γ
2 + i(ωg + Ω)

∣∣ . (8.91)

We now analyse the noise response of the interferometer. As the gravitational wave
provides an entirely classical driving of the mirrors it can only effect the determin-
istic part of the dynamics, which we have already described above. To analyse the
noise component we must consider the fluctuation operators δx, δy, δq and δ p
defined by δx = x(t)− xs(t), where xs is the semi-classical solution. In this way the
deterministic contribution is removed.

The quantum stochastic differential equations are then

d
dt

δx(t) =− γ
2

δx(t)+
√

γδxin(t) , (8.92)

d
dt

δy(t) =− γ
2

δy(t)− μδq(t)+
√

γδyin(t) , (8.93)

d
dt

q(t) =−Γ
2

q(t)+ Ωp(t)+
√

Γqin(t) , (8.94)

d
dt

p(t) =−Γ
2

p(t)−Ωq(t)− μx(t)+
√

Γpin(t) , (8.95)

with the only non-zero noise correlations being

〈δxin(t)δxin(t ′)〉= 〈δyin(t)δyin(t ′)〉= δ (t− t ′) , (8.96)

〈δxin(t)δyin(t ′)〉= 〈δyin(t)δxin(t ′)〉∗ = iδ (t− t ′) , (8.97)

〈qin(t)qin(t ′)〉= 〈pin(t)pin(t ′)〉= δ (t− t ′) , (8.98)

〈qin(t)pin(t ′)〉= 〈pin(t)qin(t ′)〉∗ = iδ (t− t ′) , (8.99)

From an experimental perspective the noise response in the frequency domain is
more useful. Thus we define

δy(ω) =
∞∫
−∞

dt eiωtδy(t) (8.100)

and similar expressions for the other variables. As δy(t) is Hermitian we have
δy(ω) = δy(−ω)†. The two time correlation functions for the variables are then
determined by

〈δy(t)δy(0)〉=
∞∫
−∞

dωe−iωt〈δy(ω)δy†(ω)〉 (8.101)

and similar expressions for the other quantities. Thus our objective is to calculate
the signal variance

VI−(ω) = 〈I−(ω)I−(ω)†〉 . (8.102)
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In order to reproduce the δ -correlated noise terms of (8.96–8.99), the correlation
function in the frequency domain must be

〈δxin(ω)δxin(ω ′)†〉= 〈δyin(ω)δyin(ω ′)〉= δ (ω−ω ′) , (8.103)

〈δxin(ω)δyin(ω ′)†〉= 〈δyin(ω)δxin(ω ′)†〉∗ = iδ (ω−ω ′) , (8.104)

〈qin(ω)qin(ω ′)†〉= 〈pin(ω)pin(ω ′)†〉= δ (ω−ω ′) , (8.105)

〈qin(ω)pin(ω ′)†〉= 〈pin(ω)qin(ω ′)†〉∗ = iδ (ω−ω ′) , (8.106)

We now directy transform the equations of motion and solve the resulting algebraic
equations for the frequency components. The result for the crucial field variable is

δy(ω) = Aδxin(ω)+ Bδyin(ω)+Cq
in(ω)+ Dp

in(ω) , (8.107)

where

A =
μ2Ω√γ

Λ(ω)
( γ

2 − iω
) ,

B =
√γ

γ
2 − iω

,

C =
−μ
√

Γ
(Γ

2 − iω
)

Λ(ω)
( γ

2 − iω
) ,

D =
−μ
√

ΓΩ
Λ(ω)

( γ
2 − iω

) . (8.108)

Λ(ω) =
(

Γ
2
− iω

)2

+ Ω2 . (8.109)

Thus

〈y(ω)y†(ω)〉= |A|2〈δxin(ω)δxin(ω)†〉+ |B|2〈δyin(ω)δyin(ω)†〉
+ |C|2〈qin(ω)qin(ω)†〉+ |D|2〈pin(ω)pin(ω ′)〉
+(AB∗〈δxin(ω)δyin(ω)†〉+ c.c.)

+ (CD∗〈qin(ω)pin(ω)†〉+ c.c.) (8.110)

It is now constructive to consider the physical interpretation of each term. The first
term proportional to the in-phase field amplitude is the error in the output intensity
due to radiation pressure fluctuations. The second term is the error due to the out-
of-phase amplitude of the field, i.e. the intrinsic phase fluctuations. The second and
third terms are the fluctuations in mirror position and momentum due to intrinsic
mirror fluctuations and radiation pressure. The fourth term represents correlations
between the amplitude and the phase of the field due to radiation pressure mod-
ulating the length of the cavity. In a similar way the final term is the correlation
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between the position and momentum of the mirror as the radiation pressure changes
the momentum which is coupled back to the position under free evolution.

Define the normalised variance by

N(ω) =
VI−(ω)

2I
, (8.111)

where I is the output intensity from each cavity. This quantity is given by

N(ω) = 1 +
16κ2IΓ

(
Γ2

4 + Ω2 + ω2
)

|Λ(ω)|2 ∣∣ γ
2 − iω

∣∣2 +
(16κ2I)2Ω2

|Λ(ω)|2 ∣∣ γ
2 − iω

∣∣4 . (8.112)

The first term in (8.112) is the shot-noise of the incident light on the detector, the
second term arises from the intrinsic (zero-point) fluctuations in the positions of the
end mirrors, while the last term represents the radiation pressure noise.

In Fig. 8.13 we display the total noise N(ω) as a function of frequency (a) (solid
line) together with the contributions to the noise from: (b) photon-counting noise
(dashed line); (c) mirror noise (dash-dot line); (d) radiation-pressure noise (dotted
line). Typical interferometer parameters, summarised in Table 8.1 were used.

From signal processing theory, a measurement at frequency ωg of duration τ
entails an error Δh in the displacement h given by

Δh2 =
2S(ωg)

τVI−(ωg)
. (8.113)

Fig. 8.13 The normalized variance for the fluctuations in the intensity difference versus frequency.
The solid line (a) represents the total noise, (b) represents the photon counting noise, (c) represents
the mirror noise and (d) represents the radiation pressure noise. The interferometer parameters used
are given in Table 8.1
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Table 8.1 The values of the experimental parameters used in the graphs

Quantity Symbol Value

Mass of mirror M 10 kg
Mirror characteristic angu-
lar frequency

Ω 20πrad s−1

Mirror damping γb 2πrad s−1

Length of cavity L 4 m
Reflectivity R 0.98
Laser power P 10 W
Laser angular frequency ω0 3.66×105 rad s−1

Gravity-wave-angular
frequency

ωg 2000π rad s−1

We may now substitute the expressions for the signal frequency components
S(ωg) and the noise at this frequency to obtain an error which depends on the input
intensity I (or equivalently the input power P = 2h̄ω0I). The error may then be min-
imised with respect to I to give minimum detectable displacement hmin. In the limit
ω2

g � Γ2 + Ω2, the appropriate limit for practical interferometers we find

h2
min =

h̄
32Mω2

g L2τΩ
(2Ω + Γ) . (8.114)

The first term in this expression is due to the light fluctuations whereas the second
term is due to the intrinsic quantum noise in the end mirrors. If we neglect the
mirror-noise contribution we find the ‘standard quantum limit’

hSQL =
1
L

(
h̄

16Mω2
g τ

)1/2

. (8.115)

In Fig. 8.14 we plot the Δh as a function of input power (8.113), for a measure-
ment time of 1 s, and typical values for the other parameters. Clearly the optimum
sensitivity is achieved at rather high input powers.

Can one do better than this, either in achieving the standard quantum limit at
lower powers or perhaps even beating the standard quantum limit? As we now show
both these results can be achieved by a careful use of squeezed states.

To see now how this might work return to (8.110) and the physical interpretation
of each term. Firstly, we note that one might reduce radiation pressure fluctuations
(the first term) by using input squeezed light with reduced amplitude fluctuations.
Unfortunately, this would increase the overall intensity fluctuations at the detector,
i.e. it would increase the photon counting noise. However, as these two terms scale
differently with intensity it is possible to apply such a scheme to enable the standard
quantum limit to be achieved at lower input power. This is indeed the conclusion of
Caves [16] in a calculation which focussed entirely on these terms. However, one
can actually do better by using squeezed states to induce correlations between the
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Fig. 8.14 The error in the fractional length change versus input power for a measurement time of
one second. Parameters are as in Table 8.1

in-phase and out-of-phase quadratures of the field. In fact, if one chooses the phase
of the squeezing (with respect to the input laser) carefully the fifth term in (8.110)
can be made negative with a consequent improvement in the overall sensitivity of
the device.

We will not present the details of this calculation [20], but summarise the results
with reference to Fig. 8.15. Firstly, if we simply squeeze the fluctuations in x̂in with-
out changing the vacuum correlations between x̂in and ŷin, the standard quantum

Fig. 8.15 The minimum possible detectable gravitational wave amplitude h as a function of power
using amplitude squeezed light at the input and for three different squeeze parameters; (a) r = 0;
(b) r = 1; (c) r = 2
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limit (8.115) is the optimum sensitivity regardless of the degree of squeezing and it
is achieved for the input power

Pss = e−2rPo , (8.116)

where r is the squeeze parameter, and Po is the optimum laser power for the system
with no squeezing.

However, if one now optimises the phase of the squeezing thereby introducing
correlations between δ x̂in and δ ŷin we find the optimum sensitivity is achieved with
the same input power Po as the unsqueezed state, but the optimum sensitivity in the
appropriate limit is

h2
min ≈

h̄
32Mω2

g L2τΩ
(2e−2|r|Ω + Γ) . (8.117)

clearly this may be made much smaller than the standard quantum limit. For Lightly
squeezed input light the sensitivity is ultimately limited by the intrinsic quantum
fluctuations in the positions of the end mirrors. The optimum phase of squeezing is
π/4 which is the angle at which maximum correlation between x̂in and ŷin occurs,
i.e., the error ellipse has the same projection onto the in-phase and out-of-phase
directions. The exact results are shown in Fig. 8.15 for the same parameters, as
employed in Fig. 8.15. Shown is the minimum-possible value of h detectable as a
function of power at the optimum phase of squeezing, for three different values of
the squeeze parameter. Also exhibited is the noise floor due to the intrinsic quantum
fluctuations of the mirror positions.

Fig. 8.16 The minimum possible detectable amplitude h as a function of input power when the
phase of the input squeezed light is optimized, for three different values of the squeeze parameter
(a) r = 0; (b) r = 1; (c) r = 2. Also shown is the mirror noise contribution (d)
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In summary, the experimentalist can apply a squeezed input to a gravitational
wave interferometer in two ways. Either the maximum sensitivity of the device can
be greatly increased but achieved at a rather high input power, or the standard quan-
tum limit can be achieved at input powers less threatening to the life of the optical
components of the interferometer.

8.3.2 Sub-Shot-Noise Phase Measurements

The second major application of squeezed light is to the detection of very small
phase shifts. A Mach–Zehnder interferometer (Fig. 8.17) can be used to determine
a phase shift introduced in one arm.

Assuming 50:50 beam splitters the relationship between the input and output
field operators is

ao = eiθ/2
(

cos
θ
2

ai + sin
θ
2

bi

)
, (8.118)

bo = eiθ/2
(

cos
θ
2

bi + sin
θ
2

ai

)
, (8.119)

Fig. 8.17 Schematic rep-
resentation of an experi-
ment designed to measure a
phase shift below the shot-
noise limit



172 8 Generation and Applications of Squeezed Light

where θ is the phase difference between the two arms. The two output fields are
directed onto two photo-detectors and the resulting currents combined with a 180◦
power combiner. This realises a measurement of the photon number difference

c†
oco = a†

oao−b†
obo

= cosθ (a†
i ai−b†

i bi)− i sinθ (aib
†
i −a†

i bi) . (8.120)

In standard interferometry the input ai is a stabilised cw laser while bi is the vacuum
state. However, as we shall show, smaller phase changes may be detected if bi is
prepared in a squeezed vacuum state.

Assuming ai is in the coherent state |α〉 while bi is in the squeezed state |0, r〉,
the mean and variance of the photon number difference at the output is

〈c†
−c−〉= cosθ (|α|2− sinh2 r) (8.121)

V (c†
−c−) = cos2 θ (|α|2 + sinh2 r cosh2r)+ sin2 θ [|α|2(1−2sinh2 r)]

− 1
2
(α2 + α∗2)sinh2r + sinh2 r] . (8.122)

If we now set θ = π/2 + δθ , then when phase shift δθ is zero, the mean signal
is zero. That is we operate on a null fringe. The Signal-to-Noise Ratio (SNR) is
defined by

SNR =
〈c†
−c−〉√

V (c†
−c−)

. (8.123)

In the standard scheme r = 0 and

SNR = n̄1/2 sinδθ (8.124)

where n̄ = |α|2. The smallest detectable phase shift is defined to be that phase for
which SNR = 1. Thus the minimum detectable phase shift for coherent state inter-
ferometry is

δθmin = n̄−1/2 . (8.125)

However, if bi is prepared in a squeezed vacuum state with squeezing in phase with
the amplitude α we find for moderate squeezing (|α|2� sinh2 r)

SNRss = n̄1/2er sinδθ (8.126)

and thus the minimum detectable phase change is

δθmin = n̄1/2er . (8.127)
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The minimum detectable phase change may thus be much smaller than for co-
herent state interferometry, provided we choose r < 0 i.e. phase squeezing.

Such an enhancement has been reported by Xiao et al. [22] in an experiment
on the measurement of phase modulation in a Mach Zehnder interferometer. They
reported on an increase in the signal-to-noise ratio of 3 dB relative to the shot-noise
limit when squeezed light from an optical parametric oscillator is injected into a
port of the interferometer. A comparison of the fluctuations in the difference cur-
rent for the cases of squeezed and a vacuum input is shown in Fig. 8.18. A similar
experiment was performed by Grangier et al. [23] employing a polarization inter-
ferometer which is equivalent to a Mach–Zehnder scheme. In their experiment an
enhancement factor of 2 dB was achieved.

8.3.3 Quantum Information

Squeezed states are being applied to new protocols in quantum information which
we discuss in. In Chap. 16. Quantum information is concerned with communication
and computational tasks enabled by quantum states of light, including squeezed
states. One such application is quantum teleportation in which an unknown quantum
state is transferred from one subsystem to another using the correlations inherent in
a two mode squeezed state.

Fig. 8.18 A comparison of
the level of fluctuations in
the differenced-photocurrent
for a Mach–Zehnder inter-
ferometer versus time as the
phase difference is varied
at a frequency of 1.6 MHz.
Curve in (a) is for the case
of vacuum state input, curve
(b) uses squeezed state input.
The dashed line gives the
vacuum level with no phase
modulation [21]
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Exercises

8.1 One of the input modes of a beam splitter, with transmitivity T , is prepared in
a coherent state, |α〉 and the other in a squeezed vacuum state |0,r〉. Show that
in the limit T → 1, |α| → ∞ with

√
(1−T)|α| = β fixed, one of the output

states is a squeezed state with a coherent amplitude β.
8.2 Calculate the squeezing spectrum for parametric oscillation in a cavity that

has different losses at each mirror for the fundamental frequency, ω1.
8.3 Calculate the spectrum of fluctuations in the difference intensity, I1− I2, if an

intracavity loss is present at the idler frequency.
8.4 Two photon absorption inside a cavity can be modeled by coupling the cavity

mode to a bath via the interaction Hamiltonian

H = a2Γ† +(a†)2Γ

where Γ is a reservoir operator and the reservoir is at zero temperature. Deter-
mine the squeezing spectrum.
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Chapter 9
Nonlinear Quantum Dissipative Systems

Abstract In the preceding chapter we derived linearised solutions to the quantum
fluctuations occurring in some nonlinear systems in optical cavities. In these solu-
tions the quantum noise has been treated as a small perturbation to the solutions of
the corresponding nonlinear classical problem. It is not possible, in general, to find
exact solutions to the nonlinear quantum equations which arise in nonlinear optical
interactions. It has, however, been possible to find solutions to some specific sys-
tems. These solutions provide a test of the region of validity of the linearised solu-
tions especially in the region of an instability. Furthermore they allow us to consider
the situation where the quantum noise is large and may no longer be treated as a
perturbation. In this case, manifestly quantum mechanical states may be produced
in a nonlinear dissipative system.

We shall give solutions to the nonlinear quantum equations for two of the prob-
lems considered in Chap. 8, namely, the parametric oscillator and dispersive optical
bistability.

9.1 Optical Parametric Oscillator: Complex P Function

We shall first solve for the steady state of the parametric oscillator using the com-
plex P function. Then, we show, using the positive P function, that the steady state
subharmonic field is in a superposition state. We go on to calculate the tunnelling
time between the two states in the superposition.

We consider the degenerate parametric oscillator described in Chap. 8, following
the treatment of Drummond et al. [1]. The Hamiltonian is

H =
3

∑
i=0

Hi (9.1)

where

H0 = �ωa†
1a1 + 2�ωa†

2a2 , (9.2)

177
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H1 = i�
κ
2

(a†2
1 a2−a2

1a†
2) , (9.3)

H2 = i�(ε2a†
2e−2iωt − ε∗2 a2e2iωt) , (9.4)

H3 = a1Γ†
1 + a2Γ†

2 + h.c . (9.5)

where a1 and a2 are the boson operators for two cavity modes of frequency ω and
2ω , respectively. κ is the coupling constant for the nonlinear coupling between the
modes. The cavity is driven externally by a coherent driving field with frequency
2ω and amplitude ε2. Γ1, Γ2 are the bath operators describing the cavity damping
of the two modes.

We recall from Chap. 8 that there are two stable steady state solutions depending
on whether the driving field amplitude is above or below the threshold amplitude
εc

2 = γ1γ2/κ . In particular, the steady states for the low frequency mode α1 are

α0
1 = 0, ε2 < εc

2 ,

α0
1 =±

[
2
κ

(ε2− εc
2)
]1/2

, ε2 ≥ εc
2 . (9.6)

The master equation for the density operator of the two modes is

∂
∂ t

ρ =
1
i�

[H0 +H1 +H2,ρ ]+ γ1(2a1ρa†
1−a†

1a1ρ−ρa†
1a1)

+ γ2(2a2ρa†
2−a†

2a2ρ−ρa†
2a2) (9.7)

where the irreversible part of the master equation follows from (6.44) for a zero-
temperature bath. γ1, γ2 are the cavity damping rates.

This equation may be converted to a c-number Fokker–Planck equation using the
generalized P representation discussed in Chap. 6. Using the operator-algebra rules
described in Chap. 6, we arrive at the Fokker–Planck equation

∂
∂ t

P(α) =
{

∂
∂α1

(γ1α1−κβ1α2)+
∂

∂β1
(γ1β1−κα1β2)

+
∂

∂α2

(
γ2α2− ε2 +

κ
2

α2
1

)
+

∂
∂β2

(
γ2β2− ε∗2 +

κ
2

β 2
1

)

+
1
2

[
∂ 2

∂α2
1

(κα2)+
∂ 2

∂β 2
1

(κβ2)
]}

P(α) (9.8)

where (α) = [α1, β1, α2, β2].
An attempt to find the steady state solution of this equation by means of a poten-

tial solution fails since the potential conditions (6.73) are not satisfied.
We proceed by adiabatically eliminating the high-frequency mode. This may be

accomplished best in the Langevin equations equivalent to (9.8).



9.1 Optical Parametric Oscillator: Complex P Function 179

∂
∂ t

(
α1

β1

)
=
(

κβ1α2− γ1α1 +
√

κα2[η1(t)]
κα1β2− γ1β1 +

√
κβ2[η̃1(t)]

)

∂
∂ t

(
α2

β2

)
=
(

ε2− κ
2 α2

1− γ2α2

ε∗2 − κ
2 β 2

2 − γ2β2

)
(9.9)

where η1(t), η̃1(t) are delta correlated stochastic forces with zero mean

〈η1(t)〉= 〈η̃1(t)〉= 〈η1(t)η1(t ′)〉= 〈η̃1(t)η̃1(t ′)〉= 0 , (9.10)

〈η1(t)η̃1(t)〉= δ (t− t ′) . (9.11)

Under the conditions γ2� γ1 we can adiabatically eliminate α2 and β2 which gives
the resultant Langevin equation for α1 and β1

∂
∂ t

(
α1

β1

)
=

(
κ
γ2

(
ε2− κ

2 α2
1

)
β1− γ1α1

κ
γ2

(
ε∗2 − κ

2 β 2
1

)
α1− γ1β1

)
+

⎛
⎜⎝
[

κ
γ2

(
ε2− κ

2 α2
1

)]1/2
η1(t)[

κ
γ2

(
ε∗2 − κ

2 β 2
1

)]1/2
η̃1(t)

⎞
⎟⎠ . (9.12)

The Fokker–Planck equation corresponding to these equations is

∂
∂ t

P(α1,β1) =
{

∂
∂α1

[
γ1α1− κ

γ2

(
ε2− κ

2
α2

1

)
β1

]

+
∂

∂β1

[
γ1β1− κ

γ2

(
ε∗2 −

κ
2

β 2
1

)
α1

]

+
1
2

[
∂ 2

∂α2
1

κ
γ2

(
ε2− κ

2
α2

1

)
+

∂
∂β 2

1

κ
γ2

(
ε∗2 −

κ
2

β 2
1

)]}
P(α1β1) .

(9.13)

We set ∂
∂ t P(α1, β1) = 0 and attempt to find a potential solution as given by (6.72).

It is found as

F1 =−2

⎛
⎝β1−

2γ2

(
γ1− κ2

2γ2

)
α1

2κε2−κ2α2
1

⎞
⎠ (9.14)

F2 =−2

⎛
⎝α1−

2γ2

(
γ1− κ2

2γ2

)
β1

2κε∗2 −κ2β 2
1

⎞
⎠ (9.15)

It follows that the potential conditions

∂F1

∂α1
=

∂F2

∂β1
(9.16)

are satisfied.
The potential is obtained on integrating (9.14 and 9.15)
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P(α) = N exp

[
2α1β1 +

2γ̄1γ2

κ2 ln(c2−κ2α2
1)+ 2

(
γ̄1γ2

κ2

)∗
ln(c∗2−κ2β 2

1 )
]

(9.17)
where

c =
√

2κε2 , γ̄1 = γ1− κ2

2γ2
.

It is clear that this function diverges for the usual integration domain of the complex
plane with β1 = α∗1. The observable moments may, however, be obtained by use of
the complex P representation. The calculations are described in Appendix 9.A.

The semi-classical solution for the intensity exhibits a threshold behaviour at
ε2 = εc

2 = γ1γ2/κ . This is compared in Fig. 9.1 with the mean intensity I = 〈β1α1〉
calculated from the solution (9.17), as shown in the Appendix 9.A. For comparison,
the mean intensity when thermal fluctuations are dominant (Exercise 9.4) is also
plotted. The mean intensity with thermal fluctuations displays the rounding of the
transition familiar from classical fluctuation theory. The quantum calculation shows
a feature never observed in a classical system where the mean intensity actually
drops below the semi-classical intensity. This deviation from the semi-classical be-
haviour is most significant for small threshold photon numbers. As the parameter
γ1γ2/κ2 is increased the quantum mean approaches the semi-classical value.

Fig. 9.1 A plot of the mean
intensity for the degenerate
parametric oscillator versus
the scaled driving field λ . (a)
The case of zero thermal fluc-
tuations. The dashed curve
represents the semi-classical
intensity, the solid curve is the
exact quantum result. In both
cases μ2 = 2εc

2/κ = 5.0. Note
that above threshold the exact
quantum result is less than the
semi-classical prediction. (b)
The case of dominant thermal
fluctuations. The mean ther-
mal photon number is 10.0
and μ2 = 2εc

2/κ = 100.0
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Fig. 9.2 The log variance
of the squeezed (solid) and
unsqueezed (dashed) quadra-
ture in a degenerate para-
metric amplifier versus the
scaled driving field with
μ2 = 2εc

2/κ = 5.0

The variance of fluctuations in the quadratures X1 = a1 +a†
1 and X2 = (a1−a†

1)/i
is given by

ΔX2
1 = [〈(α1 + β1)2〉− (〈α1 + β1〉)2]+ 1 , (9.18)

ΔX2
2 =−[〈(α1−β1)2〉− (〈α1−β1〉)2]+ 1 . (9.19)

The variance in the quadratures is plotted in Fig. 9.2a versus the scaled driving field
λ . The variance in the phase quadrature X2 reaches a minimum at threshold. This
minimum approaches 1

2 as the threshold intensity is increased [10]. The value of one
half in the variance of the intracavity field corresponds to zero fluctuations found
at the resonance frequency in the external field. The fluctuations in the amplitude
quadrature X1 increase dramatically as the threshold is approached. However, unlike
the calculation where the pump is treated classically the fluctuations do not diverge.
This is because (9.17) is an exact solution to the nonlinear interaction including
pump depletion. As the threshold value increases and therefore the number of pump
photons required to reach threshold increases, the fluctuations become larger. In
the limit γ1γ2/κ2→ ∞ the fluctuations diverge, as this corresponds to the classical
pump (infinite energy). The variance in the amplitude quadrature above threshold
continues to increase as the distribution is then double-peaked at the two stable
output amplitudes.

The above solution demonstrates the usefulness of the complex P representation.
Although the solution obtained for the steady state distribution has no interpreta-
tion in terms of a probability distribution, the moments calculated by integrating
the distribution on a suitable manifold correspond to the physical moments. We
have demonstrated how exact moments of a quantized intracavity field undergoing
a nonlinear interaction may be calculated. To calculate the moments of the external
field however, we must resort to linearization techniques.

9.2 Optical Parametric Oscillator: Positive P Function

As an alternative to the foregoing description we may consider the use of the positive
P representation, following the treatment of Wolinsky and Carmichael [2]. We can
obtain an analytic solution for the steady state positive P function. This solution is a
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function of two phase space variables; one variable is the classical field amplitude,
the other is a non-classical variable needed to represent superpositions of coherent
states. A three-dimensional plot of the positive P function allows one to distinguish
between the limiting regions of essentially classical behaviour and predominantly
quantum behaviour.

We begin with the Langevin equations for the low frequency mode

dα
dτ

=−α−β (λ −α2)+ g(λ −α2)1/2η1 , (9.20)

dβ
dτ

=−β −α(λ −β 2)+ g(λ −β 2)1/2η2 , (9.21)

where τ is measured in cavity lifetimes (γ−1
1 ),

g =
κ

(2γ1γ2)1/2
≡ 1

μ
, (9.22)

and λ is a dimensionless measure of the pump field amplitude scaled to give the
threshold condition λ = 1, and we have scaled the c-number variables by

α = gα1 , β = gβ1 . (9.23)

Equations (9.20 and 9.21) describe trajectories in a four-dimensional phase space.
The region of phase space satisfying the conjugacy condition β = α∗ is called the
classical subspace. Two extra non-classical dimensions are required by the quantum
noise. If we neglect the fluctuating forces η1 and η2 (9.20 and 9.21) have the stable
steady state solution α = β = 0 below threshold (λ < 1), and α = β =±(λ −1)1/2

above threshold (λ > 1). In the full phase space there are additional steady states
which do not satisfy the conjugacy condition: two steady states α = β = ±i(1−
λ )1/2 below threshold and two steady states α =−β =±(λ +1)1/2 both below and
above threshold.

The variables α and β are restricted to a bounded manifold α = x, β = y with x
and y both real and |x|, |y| ≤ √λ . We denote this manifold by Λ(x, y). Trajectories
are confined within this manifold by reflecting boundary conditions. If a trajectory
starts within this manifold, then it is clear from (9.20 and 9.21) that the drift and
noise terms remain real, so a trajectory will remain on the real plane. Furthermore,
at the boundary, the trajectory must follow the deterministic flow inwards, as the
transverse noise component vanishes. If the initial quantum state is the vacuum state,
the entire subsequent evolution will be confined to this manifold.

The manifold Λ(x, y) is alternatively denoted by Λ(u, υ) with u = 1
2 (x+y), υ =

1
2 (x− y). The line υ = 0 is a one-dimensional classical subspace, the subspace pre-
serving α = β . The variable υ denotes a transverse, non-classical dimension used
by the noise to construct manifestly non-classical states.

We may now construct a pictorial representation of these states which dramati-
cally distinguishes between the quantum and classical regimes.
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With α = x, β = y both real, the solution to the Fokker-Planck equation (9.13) is
of the form given by (9.17). With |x|, |y| ≤ √λ

Pss(x, y) = N[(λ − x2)(λ − y2)]1/g2−1e2xy/g2
. (9.24)

For weak noise (g� 1), Pss(x, y) is illustrated in Fig. 9.3. Below threshold (λ < 1)
Pss(u, υ) may be written

Pss(u, υ) =
(1−λ 2)1/2

πλ g/2
exp

(
−(1−λ )u2 +(1 + λ )υ2

λ g2

2

)
. (9.25)

The normally-ordered field quadrature variances are determined by the quantities

〈: ΔX2
1 :〉= V

(
α+ β

2

)
, (9.26)

〈: ΔX2
2 :〉= V

(
α−β

2

)
(9.27)

where V (z) refers to the variance over the stationary distribution function. As u =
(α + β )/2 and υ = i(α−β )/2, on the manifold Λ(u, υ), the quadrature variances
are given by

Fig. 9.3 A plot of the positive
P representation of the steady
state of the degenerate para-
metric amplifier, below and
above threshold: (a) λ = 0.8
(b) λ = 1.5. In both cases
g = (2εc

2/κ)−1/2 = 0.25
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〈: ΔX2
1 :〉= V (u)/g2 , (9.28)

〈: ΔX2
2 :〉=−V(υ)/g2 . (9.29)

The variances g−2〈Δu2〉 and −g−2〈Δυ2〉 correspond to the normally ordered vari-
ances of the unsqueezed and squeezed quadratures, respectively, of the subhar-
monic field.

The threshold distribution (g� 1, λ = 1) is given by

Pss(u, υ) =
[

4
√

πg3/2Γ
(

1
4

)]
e−(u4+4υ2)/g2

. (9.30)

Above threshold the distribution splits into two peaks. We note that in the low-noise
regime Pss(x, y) is a slightly broadened version of the classical steady state with
only a small excursion into the nonclassical space.

Figure 9.4 shows Pss(x, y) for the same values of λ as Fig. 9.3 but for the
noise strength g = 1. The quantum noise has become sufficiently strong to explore

Fig. 9.4 As in Fig. 9.3 but
with quantum noise parameter
g = 1.0. (a) λ = 0.8 (b)
λ = 1.5
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thoroughly the non-classical dimension of the phase space. Pss(x, y) is strongly in-
fluenced by the boundary Λ(x, y).

As the noise strength g is increased beyond 1, the characteristic threshold be-
haviour of the parametric oscillator disappears and squeezing is significantly re-
duced (Fig. 9.5). In the large-g limit the stochastic trajectories are all driven to the
boundary of Λ(x, y), and then along this boundary to the corners, where both noise
terms in (9.20 and 9.21) vanish. Pss(x, y) approaches a sum of δ functions

Pss(x,y) =
1
2
(1 + e4λ/g2

)−1[δ (x−
√

λ)δ (y−
√

λ)

+ δ (x +
√

λ )δ (y +
√

λ )]+
1
2
(1 + e4λ/g2

)−1

× [δ (x−
√

λ )δ (y +
√

λ )+ δ (x +
√

λ )δ (y−
√

λ )] . (9.31)

The two δ functions that set x =−y = ±√λ represent off-diagonal or interference
terms e−2

√
λ/g|√λ/g〉〈−√λ/g|. Figure 9.6a–c illustrates the behaviour of Pss(x, y)

as a function of λ in the strong-noise limit. When 4λ/g2� 1 all δ functions carry
equal weight and the state of the subharmonic field is the coherent state superposi-
tion 1

2(|√λ/g〉+ |−√λ/g〉). As λ increases, this superposition state is replaced by
a classical mixture of coherent states |√λ/g〉 and |−√λ/g〉 for 4λ/g2� 1. This is
a consequence of the competition between the creation of quantum coherence by the
parametric process and the destruction of this coherence by dissipation. It will be
shown in Chap. 15, that the decay of quantum coherence in a damped superposition
state proceeds at a rate proportional to the phase space separation of the states.

This example has illustrated how quantum dissipative systems can exhibit man-
ifestly quantum behaviour in the limit of large quantum noise. This is outside the
realm of linear noise theory where classical states are only slightly perturbed.

Fig. 9.5 As in Fig. 9.3 but
with λ = 1.5 and g = 10.0
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Fig. 9.6 As in Fig. 9.3 but
demonstrating the dependence
on λ with g = 5.0. (a) λ = 1.0
(b) λ = 5.0 (c) λ = 10.0

9.3 Quantum Tunnelling Time

We proceed to calculate the quantum tunnelling time between the two stable states.
We shall follow the procedure of Kinsler and Drummond [3]. In order to calculate
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the quantum tunnelling rate, we shall transform the variables α and β to give con-
stant diffusion, or additive stochastic noise.

u = sin−1
(

gα√
λ

)
+ sin−1

(
gβ√

λ

)
, (9.32)

υ = sin−1
(

gα√
λ

)
− sin−1

(
gβ√

λ

)
. (9.33)

These new variables are constrained to have a range such that |u|+ |υ | ≤ π. Refer-
ring back to the variables α and β , it can be seen that the u axis represents the classi-
cal subspace of the phase space where α = β . Thus the variable υ is a non-classical
dimension which allows for the creation of quantum features. The stochastic equa-
tions corresponding to these variables are

du =
{

λ sin(u)−σ
[

tan

(
u + υ

2

)
+ tan

(
u−υ

2

)]}
dτ +

√
2g dWu , (9.34)

dυ =
{
−λ sin(υ)−σ

[
tan

(
u + υ

2

)
− tan

(
u−υ

2

)]}
dτ +

√
2g dWυ . (9.35)

Here σ = 1−g2/2, dWu, dWυ are Wiener processes.
These Ito equations have a corresponding Fokker–Planck equation and a proba-

bility distribution in the limit as τ→ ∞ of

P(u, υ) = N exp[−V (u, υ)/g2] (9.36)

where the potential V (u, υ) is

V (u, υ) =−2σ ln |cos u + cosυ |+ λ cos u−λ cosυ . (9.37)

Above threshold the potential has two minima corresponding to the stable states
of the oscillator. These minima have equal intensities and amplitudes of opposite
sign, and are at classical locations with α = α∗

(u0, υ0) = (±2sin−1[(λ −σ)1/2/
√

λ ],0) (9.38)

or
gα0 =±(λ −1 + g2)1/2 . (9.39)

There is also a saddle point at (us, υs) = (0, 0).
Along the u axis the second derivative of the potential in the υ direction is always

positive. The classical subspace (υ = 0) is therefore at a minimum of the potential
with respect to variations in the non-classical variable υ . This valley along the u axis
between the two potential wells is the most probable path for a stochastic trajectory
in switching from one well to the other. The switching rate between them will be
dominated by the rate due to trajectories along this route. Using an extension of
Kramer’s method, developed by Landauer and Swanson [4], the mean time taken
for the oscillator to switch from one state to the other in the limit of g2� 1 is
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Tp =
π
γ1

(
λ + σ

λ (λ −σ)2

)1/2

exp

{
2
g2

[
λ −σ−σ ln

(
λ
σ

)]}
. (9.40)

The switching time is increased as the pump amplitude λ is increased or the
nonlinearity g2 is reduced.

Previous attempts to compute the tunnelling time for this problem have used the
Wigner function [5]. Unfortunately the time-evolution equation for the Wigner func-
tion contains third-order derivative terms and is thus not a Fokker–Planck equation.
In the case of linear fluctuations around a steady state truncating the evolution equa-
tion at second-order derivatives is often a good approximation. However, it is not
clear that this procedure will give quantum tunnelling times correctly.

In the limit of large damping in the fundamental mode the truncated Wigner
function of the sub-harmonic mode obeys with τ = γ1t

d
dτ

W (β , t) =
{

∂
∂β

[β −β ∗(λ −g2β 2)]+
∂

∂β ∗
[β ∗ −β (λ −g2β ∗2)]

+
∂ 2

∂β ∂β ∗
(1 + 2g2β β ∗)

}
W (β , τ) . (9.41)

This truncated Wigner function equation does not have potential solutions, however
an approximate potential solution can be obtained that is valid near threshold. Here,
the noise contribution 2g2β β ∗ is small and is neglected leaving only subharmonic
noise. Writing β = x + ip, the solution in the near threshold approximation is

WNT = NNT exp[−VNT(x, p)] (9.42)

where

VNT(x, p) =
2
g2 [g2x2 + g2p2 +

1
2
(g2x2 + g2p2)2−λ (g2x2−g2 p2)] (9.43)

and NNT is the normalisation constant.
Above threshold this potential has two minima, at gx =±(λ −1)1/2. In the limit

of large-threshold photon numbers, these minima are very close to those obtained
in (9.39). The tunneling time has been calculated from the Wigner distribution by
Graham [6], with the result

Tw =
π
γ1

(
λ + 1

λ (λ −1)2

)1/2

exp

[
1
g
(λ −1)2

]
. (9.44)

This result is compared with the expression derived using the P function in Fig. 9.7
which shows the variation in the logarithm of the tunnelling rate with the pump
amplitude λ . The Wigner function result predicts a slower switching time above
threshold. The difference in the two predictions can be many orders of magnitude.
The calculations from the exact positive P Fokker–Planck equation represent a true
quantum tunnelling rate. Whereas the truncation of the Wigner function equation
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Fig. 9.7 A plot of the log of the tunnelling time for the degenerate parametric amplifier above
threshold, versus pump strength or noise strength. In (a) and (b) we show the results computed by
the positive P Representation (PB approximation) while in (c) and (d) we give the results for the
truncated Wigner function model. In all cases we contrast the results obtained by potential methods
with the results obtained by direct simulation of the corresponding stochastic differential equations
and number state solution of the master equation (dashed line) [3]

involves dropping higher order derivatives dependent on the interaction strength g.
Thus nonlinear terms in the quantum noise are neglected and the only quantum noise
terms included are due to the vacuum fluctuations from the cavity losses. These give
a diffusion term in the truncated Wigner Fokker–Planck equation which is identical
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to classical thermal noise, with an occupation number of half a photon per mode.
Also indicated in Fig. 9.7 are the tunnelling times computed by direct numerical
simulation of the stochastic differential equations resulting from either the positive
P representation (Fig. 9.7a, b) or the Wigner representation (Fig. 9.7c, d) and by
directly solving the master equation in the number basis.

The differences between the two rates obtained reflect the difference between
classical thermal activation and true quantum tunnelling. Classical thermal-activation
rates are slower than quantum tunnelling rates far above threshold where the former
are large since the thermal trajectory must go over the barrier. A quantum process,
on the other hand, can short cut this by tunnelling.

9.4 Dispersive Optical Bistability

We consider a single mode model for dispersive optical bistability. An optical cavity
is driven off resonance with a coherent field. The intracavity medium has an inten-
sity dependent refractive index. As the intensity of the driving field is increased the
cavity is tuned to resonance and becomes highly transmissive.

We shall model the intracavity medium as a Kerr type χ (3) nonlinear susceptibil-
ity treated in the rotating wave approximation. The Hamiltonian is given by (5.79),
The Fokker–Planck equation is

∂P
∂ t

=
[

∂
∂α

(κα+ 2iχα2β −E0)− iχ
∂ 2

∂α2 α2

+
∂

∂β
(κ∗β −2iχβ 2α−E0)+ iχ

∂ 2

∂β 2 β 2
]

P(α,β ) (9.45)

where we choose the phase of the driving field such that Eo is real and κ = γ +
iδ . We shall seek a steady state solution using the potential conditions (6.72). The
calculation of F gives

F1 =−
(

i
χ

)(
κ̄
α

+ 2χβ − E0

α2

)
, F2 =

(
i

χ∗

)(
κ̄∗

α
−2χ∗β − E0

β 2

)
, (9.46)

where we have defined κ̄ = κ−2iχ . The cross derivatives

∂αF2 = ∂β F1 = 2 (9.47)

so that the potential conditions are satisfied.
The steady state distribution is given by
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Pss(α, β ) = exp

⎡
⎣

α∫
Fρ(α′)dα′ρ

⎤
⎦

= exp

⎧⎨
⎩

α∫ [
1
iχ

(
κ̄
α1

+2iχβ1−E0

α2
1

)
dα1− 1

iχ

(
κ̄∗
β1
−2iχα1−E0

β 2
1

)
dβ1

]⎫⎬
⎭

= αc−2β d−2 exp

[(
E0

iχ

)(
1
α

+
1
β

)
+ 4αβ

]
(9.48)

where c = κ
iχ , d =

(
κ
iχ

)∗
.

It can be seen immediately that the usual integration domain of the complex plane
with α∗ = β is not possible since the potential diverges for αβ → ∞. However, the
moments may be calculated using the complex P representation. The calculations
are described in Appendix 9.A. The results for the mean amplitude 〈a〉 and cor-
relation function g(2)(0) are plotted in Fig. 9.8 where they are compared with the
semi-classical value for the amplitude αSS.

It is seen that, whereas the semi-classical equation predicts a bistability or hys-
teresis, the exact steady state equation which includes quantum fluctuations does
not exhibit bistability or hysteresis. The extent to which bistability is observed in
practice will depend on the fluctuations, which in turn determine the time for ran-
dom switching from one branch to the other. The driving field must be ramped in
time intervals shorter than this random switching time in order for bistability to be
observed.

The variance of the fluctuations as displayed by g(2)(0) show an increase as the
fluctuations are enhanced near the transition point. The dip in the steady state mean
at the transition point is due to out-of-phase fluctuations between the upper and
lower branches.

Fig. 9.8 The steady state
amplitude, and second-order
correlation function for opti-
cal bistability versus the pump
amplitude. The chain curve
gives the semi-classical steady
state amplitude. The full curve
gives the exact steady state
amplitude. The broken curve
presents the second-order
correlation function g(2)(0).
The detuning is chosen so that
Δωχ < 0 with Λω =−10 and
χ = 0.5
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9.5 Comment on the Use of the Q and Wigner Representations

We will compare the above solution we have obtained with the generalised P repre-
sentation with the equation obtained using the Q and Wigner representations. With
the Q representation we obtain the following equation

∂Q
∂ t

(α∗,α)=
[

∂
∂α

(−E0 + κ̄α+ 2iχα2α∗)+ iχ
∂ 2

∂α2 α2 +(κ/2)
∂ 2

∂α∂α∗
+ c.c.

]
Q(α∗,α)

(9.49)

where κ̄ = κ−4iχ + iΔω .
This equation has a non-positive definite diffusion matrix. Furthermore, it does

not satisfy the potential conditions, hence its steady-state solution is not readily
obtained.

The equation for the Wigner function may be shown to be as in,

∂W (α∗,α)
∂ t

=
(

E0
∂

∂α
+ κ

∂
∂α

+
κ
2

∂ 2

∂α∗∂α
−2iχ

∂
∂α
− iχ

1
2

∂ 2

∂α∗2
α

+2iχ
∂ 3

∂α3 α∗α2 + c.c.

)
W (α∗,α) . (9.50)

This equation is not of a Fokker–Planck form since it contains third-order deriva-
tives. Again a steady-state solution is not readily obtainable. It is clear that for
this problem the use of the complex P representation is preferable to the other two
representations.

Exercises

9.1 Derive the Fokker–Planck equation for P(α1, α2, t) for the non-degenerate
parametric oscillation after adiabatically eliminating the pump mode. Solve
for the potential solution and derive the moments.

9.2 Derive the evolution equations for the Q and Wigner functions for the degen-
erate parametric oscillator described by (9.1).

9.3 Derive the equation of motion for the Q function for optical bistability. Show
that with zero detuning and zero driving the solution for an initial coherent
state is

Q(α, t) =exp(−|α|2)
∞

∑
q, p=0

(q!p!)−1(αα∗0)
q(α∗α0)p f (t)(p+q)/2

× exp

{
−|α0|2 [ f (t)+ iδ ]

(1 + iδ )

}

where

δ =(p−q)/κ , f (t) = exp[−κν− iν(p−q)] , ν = 2μt , κ =
γ

2μ
.
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9.4 Calculate the steady state distribution P(α) and the mean intensity 〈α∗α〉 for
the degenerate parametric oscillator for the case where the thermal fluctuations
dominate the quantum fluctuations.

9.A Appendix

9.A.1 Evaluation of Moments for the Complex P function
for Parametric Oscillation (9.17)

It is necessary to integrate on a suitable manifold, chosen so that the distribution
(9.17) and all its derivatives vanish at the boundary of integration. If we expand the
term exp(2α1 β1) in (9.17) in a power series, the expression for the moment

Inn′ =
∫ ∫

β nαn′P(α)dα dβ . (9.A.1)

can be written as

Inn′ = N(2|c|)2( j2−2)
∞

∑
m=0

2m+2

m!

(−c
κ

)m+n−1(−c∗

κ

)m+n′+1

×
∫ ∫

z1
j1−1(1− z1) j2− j1−1(1−2z1)m+n(1−2z2)m+n′

× z j1−1
2 (1− z2) j2dz1dz2 (9.A.2)

where

j1 =
2γ1γ2

κ2 , j2 =
4γ1γ2

κ2 , z1 =
1
2

(
1 +

κα1

c

)
, z2 =

1
2

(
1 +

κβ2

c∗

)
.

These integrals are identical to those defining the Gauss’ hypergeometric functions.
The integration path encircles each pole and traverses the Riemann sheets so that
the initial and final values of the integrand are equal, allowing partial integration
operations to be defined. The result is [7].

Inn′ = N′
∞

∑
m=0

2m

m!

(−c
κ

)m+n(−c∗

κ

)m+n′

×2 F1(−(m+ n), j1, j2,2)2F1(−(m+ n), j1, j2,2) (9.A.3)

where 2F1 are hypergeometric functions.
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9.A.2 Evaluation of the Moments for the Complex P Function
for Optical Bistability (9.48)

The normalization integral is

I(c, d) =
∫ ∫

c

∑ 2n

n!
x−c−ny−d−n exp

[
E0

χ
(x + y)

]
dx dy (9.A.4)

where we have made the variable change x = 1/α, y = 1/β , and C is the integration
path. α∗ = β since the potential diverges for |α|2 → ∞. This means no Glauber–
Sudarshan P function exists in the steady state (except as a generalised function).
Hence, we shall use the complex P function where the paths of integration for α and
β are line integrals on the individual (α, β ) complex planes.

The integrand is now in a recognisable form as corresponding to a sum of gamma
function integrals. It is therefore appropriate to define each path of integration to be
a Hankel path of integration, from (−∞) on the real axis around the origin in an
anticlockwise direction and back to (−∞). With this definition of the integration
domain, the following gamma function identity holds [8]:

[Γ(c + n)]−1 =
(

t1−c−n

2πi

)∫
c

x−c−n exp(xt)dx . (9.A.5)

Hence, applying this result to both x and y integrations, one obtains with χ̃ = iχ

I(c, d) =−4π2
∞

∑
n=0

2n(E0/χ̃)c+d+2(n−1)

n!Γ(c + n)Γ(d + n)
. (9.A.6)

The series is a transcendental function which can be written in terms of the gener-
alised Gauss hypergeometric series. That is, there is a hypergeometric series called
0F2 which is defined as [9]

0F2(c, d, z) =
∞

∑
n=0

znΓ(c)Γ(d)
Γ(c + n)Γ(d + n)n!

. (9.A.7)

From now on, for simplicity, we will write just F(), instead of 0F2(). Now the nor-
malisation integral can therefore be rewritten in the form

I(c, d) =
(−4π2|E0/χ̃ |c+d−2

Γ(c)Γ(d)

)
F(c, d, 2|E0/χ̃|2) . (9.A.8)

The moments of the distribution function divided by the normalisation factor give
all the observable one-time correlation functions. Luckily the moments have ex-
actly the same function form as the normalisation factor [with the replacement of
(c,d) by (c+ i, d + j)] so that no new integrals need to be calculated. The ith-order
correlation function is
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G(i) = 〈(a†)i(a)i〉=
( |E0/χ̃|2iΓ(c)Γ(d)F(i+ c, i+ d, 2|E0/χ̃|2)

Γ(i+ c)Γ(i+ d)F(c, d,2|E0/χ̃|2)
)

. (9.A.9)

This is the general expression for the ith-order correlation function of a nonlinear
dispersive cavity with a coherent driving field and zero-temperature heat baths.

The results for the mean amplitude 〈a〉 and correlation function g2(0) are

〈a〉= 1
c
|E0/χ̃|F(1 + c, d, 2|E0/χ̃ |2)

F(c, d, 2|E0/χ̃|2) , (9.A.10)

g(2)(0) =
(

cdF(c, d, 2|E0/χ̃|2)F(c + 2, d + 2, 2|E0/χ̃|2)
(c + 1)(d + 1)[F(c + 1, d + 1, 2|E0/χ̃|2)]2

)
. (9.A.11)
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Chapter 10
Interaction of Radiation with Atoms

Abstract The preceding chapters have been concerned with the properties of the
radiation field alone. In this chapter we turn to the interaction between radiation
and matter. This is of course the domain of quantum electrodynamics, however in
quantum optics we are usually only concerned with low energy systems of bound
electrons which simplifies matters considerably. We will use the occupation num-
ber representation for bound many-electron systems to quantize the electronic de-
grees of freedom, following the approach of Haken [1] and also Cohen-Tannoudji
et al. [2].

10.1 Quantization of the Many-Electron System

In the full theory of QED, the interaction between the electromagnetic field and
charged matter is described by coupling between the vector potential and the Dirac
spinor field. In quantum optics we only need the low energy (non relativistic) limit
of this interaction. This is given by the minimal coupling Hamiltonian [3]

H =
1

2m
(�p− e�A)2 + eV(�x)+ Hrad (10.1)

where �p is the momentum operator for a particle of charge e moving in a Coulomb
potential V (�x). The vector potential is quantised in a box of volume V as

�A(�x,t) = ∑
n,ν

√
h̄

2εoωnV
�en,ν

[
ei(�kn.�x−ωnt)an,ν + e−i(�kn.�x−ωnt)a†

n,ν

]
(10.2)

where �en,ν are two orthonormal polarisation vectors (ν = 1,2) which satisfy �kn ·
�en,ν = 0, as required for a transverse field, and the frequency is given by the dis-
persion relation ωn = c|�kn|. The positive and negative frequency Fourier operators,
respectively an,ν and a†

m,ν , satisfy

197
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[an,ν ,an′,ν ′ ] = δνν ′δnn′ (10.3)

The last term, Hrad is the Hamiltonian of the free radiation field given by

Hrad = ∑
k

h̄ωka†
kak (10.4)

where we have subsumed polarisation and wave vectors labels into the single sub-
script k.

We now use an occupation number representation in the antisymmetric sector
of the many body Hilbert space for the electronic system based on a set of single
particle states |φ j〉, with position probability amplitudes, φ j(�x), which we take as the
bound energy eigenstates of the electronic system without radiation. They could for
example be the stationary states of a atom, the quasi bound states of a single Cooper
pair on a mesoscopic super-conducting metal island, or the bound exciton states of
semiconductor quantum dot. We then define the electronic field operators

ψ̂(�x) = ∑
j

c jφ j(�x) (10.5)

where the appropriate commutations relations for the antisymmetric sector are the
fermionic forms

ckc†
l + clc

†
k = δkl (10.6)

ckcl + clck = c†
kc†

l + c†
l c†

k = 0 (10.7)

In the occupation number representation the Hamiltonian may be written as the
sum of three terms, H = Hel + HI + Hrad where the electronic part is given by

Hel =
∫

d3�xψ̂†(�x)
[
− h̄2

2m
∇2 + eV(�x)

]
ψ̂(�x) = ∑

j

E jc
†
j c j (10.8)

The interaction part may be written as the sum of two terms HI = HI, 1 +HI, 2 where

Hl, 1 =
∫

d3�xψ̂†(�x)
(
− e

2m
(�A(�x).�p+�p.�A(�x))

)
ψ̂(�x) (10.9)

Hl, 2 =
∫

d3�xψ̂†(�x)
(

e2

2m
(�A(�x)2

)
ψ̂(�x) (10.10)

Unless we are dealing with very intense fields for which multi-photon processes are
important, the second term HI, 2 may be neglected.

The dominant interaction energy may then be written as

HI = h̄ ∑
�k,n,m

g�k,n,m(b�k + b†
�k
)c†

ncm (10.11)

where the interaction coupling constant is
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g�k,n,m =− e
m

(
1

2ε0h̄ωkV

)1/2∫
d3�xφ∗n(�x)

(
ei�k.�x�p

)
φm(�x) (10.12)

We now proceed by making the dipole approximation. The factor ei�k�x varies on a
spatial scale determined by the dominant wavelength scale, λ0, of the field state. At
optical frequencies, λ0 ≈ 10−6 m. However the atomic wave functions, φn(�x) vary
on a scale determined by the Bohr radius, a0 ≈ 10−11 m. Thus we may remove the
oscillatory exponential from the integral and evaluate it at the position of the atom
�x =�x0. Using the result

[�p2, �x] =−i2h̄�p (10.13)

we can write the interaction in terms of the atomic dipole moments
∫

d3�xφ∗n(�x)
(

ei�k.�x�p
)

φm(�x) = i
m
e

ωnmei�k.�x0

∫
d3�xφ∗n(�x)(e�k)φm(�x) (10.14)

where ωnm = (En−Em)/h̄.
In the interaction picture the interaction Hamiltonian becomes explicitly time

dependent,

H̃I(t) = h̄ ∑
�k,n,m

g�k,n,m(b�ke−iω(�k)t + b†
�k

eiω(�k)t)c†
ncmeiωnmt (10.15)

where the tilde indicates that we are in the interaction picture. If the field is in state
for which the dominant frequency is such that ω(�k0) ≈ ωnm, the field is resonant
with a particular atomic transition and we may neglect terms rotating at the very
high frequency ω(�k)+ωnm. This is known as the rotating wave approximation. This
assumes that the field strength is not too large and further that the state of the field
does not vary rapidly on a time scale of ω−1

nm i.e. we ignore fields of very fast strong
pulses. As a special case we assume the field is resonant (or near-resonant) with a
single pair of levels with E2 > E1. The interaction picture Hamiltonian in the dipole
and rotating wave approximation is then given by

H̃I = h̄∑
�k

c†
1c2b†

�k
g�ke−i(ω(�k)−ω21)t + h.c (10.16)

where

g�k =−i
(

2h̄ε0ω(�k)V
)−1/2

ωaμ21ei�k.�x0 (10.17)

and
μ21 = 〈φn|e�x|φm〉 (10.18)

with ωa = ω2−ω1.
It is conventional to describe the operator algebra of a two level system in terms

of pseudo-spin representation by noting that the Pauli operators may be defined as
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σz = c†
2c2− c†

1c1 (10.19)

σx = c†
2c1 + c†

1c2 (10.20)

σy =−i(c†
2c1− c†

1c2) (10.21)

σ+ = σ†
− = c†

2c1 (10.22)

The operators sα = σα/2 (with α = x,y,z) then obey the su(2) algebra for a spin
half system. In terms of these operators we may write the total Hamiltonian for the
system of field plus atom in the dipole and rotating wave approximation as

H = ∑
�k

h̄ω(�k)b†
�k

b�k +
h̄ωa

2
σz + h̄∑

�k

g�kb�kσ+ + h.c . (10.23)

The free Hamiltonian for the two-level electronic system is

Hel =
h̄ωa

2
σz (10.24)

Denoting the ground and excited states as |1〉 and |2〉 respectively, we see that

Hel|s〉= (−1)s h̄ωa

2
|s〉 s = 1,2 (10.25)

The action of the raising and lowering operators on the energy eigenstates is:
σ+|1〉 = |2〉 and σ−|2〉 = |1〉, while σ2± = 0. We now relabel the ground state and
excited state respectively as |1〉 ≡ |g〉, |2〉 ≡ |e〉. If the state of the system at time t is
ρ , the probability to find the electronic system in the excited state and ground state
are, respectively,

pe(t) = 〈2|ρ|2〉= 〈σ+σ−〉 (10.26)

pg(t) = 〈1|ρ|1〉= 〈σ−σ+〉 (10.27)

The atomic inversion is defined as the difference between these two probabilities
and is given by

pe(t)− pg(t) = 〈σz〉 (10.28)

While the atomic coherences are defined by

ρ12 ≡ 〈1|ρ|2〉= 〈σ+〉 (10.29)

with ρ21 = ρ∗12.
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10.2 Interaction of a Single Two-Level Atom
with a Single Mode Field

If we further restrict the state of the field to include only a single mode, with
frequency ω0; perhaps using a high Q optical resonator, we arrive at the Jaynes–
Cummings hamiltonian,

H = h̄ω0b†b +
h̄ωa

2
σz + h̄(gbσ+ + g∗b†σ−) (10.30)

coupling a single harmonic oscillator degree of freedom to a two-level system,
which might well be called the standard model of quantum optics [4]. The coupling
constant g can vary from a few kHz to many MHz. An example is provided by the
experiment of Aoki et al. [5] in which a cesium atom interacts with the toroidal whis-
pering gallery mode of a micro-resonator as it falls under the action of gravity from
a magneto-optical trap. The atomic resonance at is the 6S1/2; F = 4→ 6P3/2; F ′= 5
transition in cesium. A coupling constant as large as g/2π = 50MHz was achieved.

On resonance, ωa = ωc = ω, we see that the interaction Hamiltonian HI =
h̄g(bσ+ + b†σ−) (with g chosen as real), commutes with the free Hamiltonian,
H0 = h̄ω(b†b + 1

2 σz), so that the eigenstates of the full Hamiltonian can be writ-
ten as a linear combination of the degenerate eigenstates of H0. Defining |n,s〉 =
|n〉b⊗ |s〉, where b†b|n〉= n|n〉, the degenerate eigenstates of the free Hamiltonian
are |n,2〉, |n+1,1〉. Within this degenerate subspace, the state at time t may be writ-
ten |ψn(t)〉= cn,2(t)|n,2〉+cn+1,2(t)|n+1,1〉, and the Schröedinger equation in the
interaction picture is

(
ċn,2

ċn+1,1

)
=−iΩnσx

(
cn,2

cn+1,1

)
(10.31)

where Ωn = g
√

n + 1. The eigenvalues of this system of linear equations are ±iΩn,
corresponding to the eigenstates of HI

|n,±〉= 1√
2
(|n,2〉± |n + 1,1〉) (10.32)

which are often referred to as the dressed states. The splitting of the degeneracy is
depicted in Fig. 10.1.

Thus the general solution is

cn,2(t) = cn,2(0)cosΩnt− icn+1,1(0)sin Ωnt (10.33)

cn+1,1(t) = cn+1,1(0)cosΩnt− icn,2(0)sin Ωnt (10.34)

If the atom is initially in the excited state and the cavity field has exactly n photons,
the probability for finding the atom in the same state at time t > 0 is

pe(t) = |〈n,2|ψn(t)〉|2 =
1
2
(1 + cos2Ωnt) (10.35)



202 10 Interaction of Radiation with Atoms

(|1>|g >, |0>|e >)

.

.

.

.
(|2 >|g >, |1>|e >)

(|n + 1>|g >,|n >|e >)

|1,–>

|1,+>

|2, –>

|2, +>

|n, –>

|n, +>

2g

2g

2 2 g

n + 1

Fig. 10.1 The dressed states for the energy eigenstates of the Jaynes–Cummings interaction. On
the left are show the degenerate states for zero interaction. When the interaction is turned on the
degeneracies are lifted

The excitation oscillates backward and forth between the cavity and the electronic
system with frequency Ωn, the Rabi frequency. Note that for n = 0 the separation of
these eigenvalues is 2g, which is known as the vacuum Rabi splitting.

If the field is in an arbitrary pure state, |φ〉 = Σn fn|n〉 and the atom is initially
excited, the probability to find the atom in the excited state at time t > 0 may be
written

pe(t) =
1
2

[
1 +

∞

∑
n=0
| fn|2 cos(2g

√
n + 1t)

]
(10.36)

This is a discrete superposition of harmonic oscillations with incommensurate fre-
quencies. Thus it must exhibit quasiperiodic behaviour. If the initial photon number
distribution | fn|2 has narrow support on n, only a few frequencies are involved and
there is a beating between these different frequencies leading to what are known
as collapses and revivals. The collapse refers to the decay of oscillations at short
times due to beating between the incommensurate frequencies. The revival refers to
partial re-phasing of the oscillations at later times. In the case of the field initially
in a coherent state, |α〉, the initial number distribution is Poissonian with standard
deviation in number given by the root mean, n̄1/2|α|. An approximate evaluation of
the sum valid for times such that gt < n̄1/2 gives [6]

pe(t) =
1
2

[
1 + e

− g2t2 n̄
2(n+1) cos(2g

√
n̄+ 1t)

]
(10.37)

There is an average Rabi oscillation frequency under a Gaussian envelope. The char-
acteristic time for the collapse of the oscillation is thus
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Fig. 10.2 (a) The experimen-
tal observation of collapse and
revival of the oscillations in
the occupation of the excited
state of a two-level atom inter-
acting with a microwave field
initially in a coherent state
with mean photon number
n̄ = 0.85. In (b) is the Fourier
transform of the oscillations
with the Rabi frequencies
Ωn, n = 0, 1, 2, 3 marked
(from [7])

tcol ∼ 1
g

(10.38)

A more accurate evaluation using the Laplace summation formulae shows that the
oscillations first revive at a t time

trev ∼ 2π
g

n̄1/2 (10.39)

Thus a quasi periodic burst of Rabi oscillations occurs every n̄ Rabi periods. The
collapse and revival has been seen experimentally using an atom excited to a Ryberg
ground state interacting with the microwave field in a superconducting cavity [7].
The results of the experiment are shown in Fig. 10.2.

10.3 Spontaneous Emission from a Two-Level Atom

Spontaneous emission can also be treated using a master equation. In this case the
system is a two-level electronic system, with ground state |g〉 of energy h̄ω1 and ex-
cited state |e〉 with energy h̄ω2, representing an electric dipole transition, coupled to
the many modes of the radiation field in the dipole and rotating wave approximation.
The master equation is
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dρ
dt

=− i

h̄
[H,ρ]+ γ(n̄+ 1)D [σ−]ρ + γ n̄D [σ+]ρ (10.40)

where n̄ is the thermal occupation of the radiation field mode at the atomic resonance
frequency ωa = ω2−ω1. We have neglected a small term which gives rise to a
shift in the atomic transition frequency and which contributes to the Lamb shift.
At optical frequencies, n̄ ≈ 0. In the case of a free two-level atom, H = h̄ωa

2 σz the
probability to find the atom in the excited state, pe(t) = 〈e|ρ|e〉 satisfies the equation

dpe

dt
=−γ pe(t) (10.41)

with the solution pe(t) = pe(0)e−γt , which describes spontaneous emission. The
dipole polarisation is proportional to the atomic coherence, 〈e|ρ|g〉 = 〈σ−〉 which
obeys

d〈σ−〉
dt

=−
(

iωa +
γ
2

)
〈σ−〉 (10.42)

with the solution
〈σ−(t)〉= 〈σ−(0)〉e−(γ/2+iωa)t (10.43)

The dipole oscillates at the transition frequency and decays, as it radiates.
The radiated field is related to the input field and the local source through an in-

put/output relation in analogy with the case of a cavity discussed above. The positive
frequency components of the field operator takes the form

E(+
o (�x,t) = E(+)

i (�x,t)− ω2
a

4πε0c2r

(
�μ×�x

r

)
×�x

r
σ−(t− x/c) (10.44)

where r = |�x| is the distance from the source to the point�x and�μ is the atomic dipole
moment.

10.4 Phase Decay in a Two-Level System

Spontaneous emission is not the only irreversible process involved in the absorption
and emission of light. In an atomic vapour, atomic collisions are also a source of de-
coherence and cause a decay of the atomic polarisation, σx + iσy, without changing
the decay of the inversion, σz. We can model this process by a coupling between the
inversion and a high temperature heat bath,

Hcol = σzΓc(t) (10.45)

where Γc(t) is a bath operator describing the collisions. This Hamiltonian com-
mutes with σz and thus does not contribute to the decay of the inversion. It appears
like a fluctuating detuning in the Bloch equations and thus will effect the atomic
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polarisation. The corresponding master equation, in the interaction picture and in-
cluding spontaneous emission, is

dρ
dt

=
γ
2
(2σ−ρσ+−σ+σ+ρ−ρσ+σ+)− γp[σz, [σz[,ρ]] (10.46)

The Bloch equations now become

d〈σz〉
dt

=−γ(〈σz〉+ 1) (10.47)

d〈σx〉
dt

=−
( γ

2
+ γp

)
〈σx〉 (10.48)

d〈σy〉
dt

=−
( γ

2
+ γp

)
〈σy〉 (10.49)

In the presence of collisions the decay time for the polarisation, T2, is no longer
given by twice the decay time for the inversion, T1 = γ−1, but rather T2 < 2T1.

10.5 Resonance Fluorescence

If the atom is driven by a classical radiation field, the Hamiltonian becomes (see
(10.30) and replace b �→ β)

H =
h̄ωa

2
σz + Ω(σ+e−iωLt + σ−eiωLt) (10.50)

where Ω = gβ is the Rabi frequency and ωL is the carrier frequency of the driving
field. The master equation in an interaction picture at the frequency ωL is

dρ
dt

=−i
Δω
2

[σz,ρ]− iΩ[σ+ + σ−,ρ]+ γD [σ−]ρ (10.51)

where the detuning is Δω = ωa−ωL. The resulting Bloch equations for the atomic
moments are linear

d〈σ−〉
dt

=−
(γ

2
+ iΔω

)
〈σ−〉+ iΩ〈σz〉 (10.52)

d〈σz〉
dt

=−γ(〈σz〉+ 1)−2iΩ(〈σ+〉− 〈σ−〉) (10.53)

These inhomogeneous equations can be written as homogeneous equations as

d
dt

(〈�σ(t)〉− 〈�σ〉ss) = A(〈�σ(t)〉− 〈�σ〉ss) (10.54)
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where

A =

⎛
⎝−

( γ
2 − iΔω

)
0 −iΩ

0 −( γ
2 + iΔω

)
iΩ

−2iΩ 2iΩ −γ

⎞
⎠ (10.55)

with 〈�σ〉= (〈σ+〉,〈σ−〉,〈σz〉)T and the steady state solutions are

〈σz〉ss =− 1 + δ2

1 + δ2 + Z2
(10.56)

〈σ+〉ss =
i√
2

Z(1 + iδ)
1 + δ2 + Z2

(10.57)

with

Z =
2
√

2Ω
γ

, δ =
2Δω

γ
(10.58)

The solutions for resonance (Δω = 0), with the atom initially in the ground state,
are

〈σz(t)〉= 8Ω2

γ2 + 8Ω2

[
1− e−3γt/4

(
cosh κt +

3γ
4κ

sinh κt

)]
−1 (10.59)

〈σ+(t)〉= 2iΩ
γ

γ2 + 8Ω2

[
1− e−3γt/4

(
cosh κt +

(
κ
γ

+
3γ

16κ

)
sinh κt

)]
(10.60)

where

κ =
1
2

√
γ2

4
−16Ω2 (10.61)

Clearly there is a threshold at Ω = γ/8 below which the solutions monotonically
approach the steady state and above which they are oscillating. A similar threshold
occurs in the solutions for the two-time correlation function 〈σ+(t)σ−(t + τ)〉t→∞
which determines the spectrum of the scattered light.

The stationary spectrum, as measured by a monochromatic detector at the point
�x is defined by [9]

S(�x,ω) = lim
t→∞

1
2π

∫ ∞

−∞
〈E(−)(�x,t)E(+)(�x,t + τ)〉dτ (10.62)

the Fourier transform of the stationary two-time correlation function
〈E(−)(t)E(+)(t + τ)〉 which using (10.44) is given by

S(�x,ω) =
I0(�x)
2π

∫ ∞

−∞
dτe−iωτG(τ) (10.63)
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where

I0(�x) =
∣∣∣∣ ω2

0

4πε0c2r

(
�μ×�x

r

)
×�x

r

∣∣∣∣
2

(10.64)

and
G(τ) = lim

t→∞
〈σ+(t)σ−(t + τ)〉 ≡ 〈σ+σ−(τ)〉ss (10.65)

with
〈σ+(t)σ−(t + τ)〉= tr

[
σ−eL τρ(t)σ+

]
(10.66)

The equation of motion for G(τ) couples in many other moments. If we define the
correlation matrix

G (τ) =

⎛
⎝〈σ+σ+(τ)〉ss 〈σ−σ+(τ)〉ss 〈σzσ+(τ)〉ss

〈σ+σ−(τ)〉ss 〈σ−σ−(τ)〉ss 〈σzσ−(τ)〉ss

〈σ+σz(τ)〉ss 〈σ−σz(τ)〉ss 〈σzσz(τ)〉ss

⎞
⎠ (10.67)

The quantum regression theorem indicates that G (τ) as a function of τ obeys the
same equations of motion as 〈�σ(τ)〉− 〈�σ〉ss,

G (τ)
dτ

= AG (τ) (10.68)

The initial conditions are simplified due to the algebra of the Pauli matrices, for
example σ+σ− = (σz + 1)/2 and σ2± = 0, and may thus be written in terms of the
stationary solutions in (10.57). On resonance we find that in the Schrödinger picture,

G(τ) =
4Ω2

γ2 + 8Ω2

[
γ2

γ2 + 8Ω2 e−iωat +
1
2

e−(γ/2+iωa)τ

− 1
2

(
γ2

γ2 + 8Ω2

3γ/4 + κ
κ

− γ/2
κ
− γ/4 + κ

2κ

)
exp{−(3γ/4−κ+ iωa)τ}

+
1
2

(
γ2

γ2 + 8Ω2

3γ/4−κ
κ

− γ/2
κ
− γ/4−κ

2κ

)
exp{−(3γ/4 + κ+ iωa)τ}

]

(10.69)

with τ ≥ 0. The corresponding spectrum has a single Lorentzian peak for weak
driving fields, 4Ω << γ2/16,

S(�x,ω) = I0(r)
4Ω2

γ2 + 8Ω2 δ(ω−ωa) (10.70)

which corresponds to elastic scattering. For very strong driving fields, Ω >> γ we
find that the spectrum acquires three Lorentzian peaks at ω = ωa and ω = ωa±2Ω.
The spectrum, including the elastic term, is
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S(�x,ω) =
I0(r)
2π

(
2π

4Ω2

γ2 + 8Ω2 δ(ω−ωa)+
1
2

γ/2
γ2/4 +(ω−ωa)2

+
1
4

3γ/4
(3γ/4)2 +[ω− (ω+ 2Ω)]2

+
1
4

3γ/4
(3γ/4)2 +[ω− (ω−2Ω)]2

)

(10.71)

This is the Mollow spectrum [10].
The light scattered by a two-level atom also exhibits photon anti-bunching. Con-

sider the conditional probability that given a photon is counted at time t another
photon will be counted a time τ later. This is proportional to the second order corre-
lation function

G(2)(t,τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉 (10.72)

Usually we are interested in a stationary source so we let t → ∞ and we normalise
this by the intensity squared to define

g(2)(τ) = lim
t→∞

G(2)(t,τ)
〈a†(t)a(t)〉2 (10.73)

Using the result in (10.44) we can express this directly in terms of correlation func-
tions for the atomic polarisation. As the equations of motion for the atomic variables
are linear, the stationary correlation function 〈σ+(t)σ+(t +τ)σ−(t +τ)σ−(t)〉t←∞ is
given by the quantum regression theorem. We then find that

g(2)(τ) = 1− e−3γt/4
(

cosh κτ+
3γ
4κ

sinh κτ
)

(10.74)

The result g(2)(τ = 0)= 0 indicates photon anti-bunching, as the probability to count
a second photon, immediately after a first one has been counted, vanishes. This is
a direct result of the emission process of the source. Photons are emitted when an
excited atom relaxes back to the ground state. If a photon is counted, the atom is
likely to be in ground state and thus a finite time must elapse before it is re-excited
and capable of emitting another one. The probability to find the atom in the excited
state at time τ given that it starts in the ground state at τ = 0 is

Pe(τ) =
4Ω2

γ2 + 8Ω2

[
1− e−3γτ/4

(
cosh κτ+

3γ
4κ

sinh κτ
)]

(10.75)

Comparison with (10.74) indicates this interpretation is correct. This prediction,
first made by Carmichael and Walls [8], was one of the earliest examples of how
quantum optics would differ from a semiclassical description of light. In Fig. 10.3
we plot g(2)(τ) for two values of the Rabi frequency.

The first observation of photon antibunching was made by Kimble et al. in 1977
on atomic beams [11]. They saw a positive slope for g(2)(τ) which is consistent
with the predictions of the theory, however fluctuations from atomic numbers in the
beam made a detailed comparison with the single atom result impossible. Ion traps
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Fig. 10.3 The second order
correlation function of the
fluorescent light, given by
(10.74) versus delay time τ.
The solid line corresponds to
Ω = 2.5, while the dashed
line corresponds to Ω = 0.25.
In both cases γ = 1.0

2 4 6 8 10
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g(2)(τ)

τ

(see Chap. 17) provided a means to observe photon antibunching from a single atom
[12]. In Fig. 10.4 we show the results of a measurement of the second order corre-
lation function performed on a single trapped mercury ion by Walther’s Garching
group [13].

Fig. 10.4 The second order correlation function of the fluorescent light form a single mercury
ion in a trap versus delay, τ. (a)Δ = −2.3γ , Ω = 2.8γ . (b)Δ = −1.1γ , Ω = γ , (c)Δ = −0.5γ ,
Ω = 0.6γ (from [13])
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Exercises

10.1 In the Jaynes–Cummings model, show that if the atom begins in the ground
state and the field begins in the state |φ〉= Σ fn|n〉, the probability to find the
atom in the excited state at time t > 0 is given by

pe(t) =
∞

∑
n=1

| fn|2 sin2(Ωn−1t) (10.76)

10.2 In the Jaynes–Cummings model, show that if the atom begins in the ground
state and the field begins in the state |φ〉 = Σ fn|n〉, the state at time t > 0 is
the entangled state

|ψ(t)〉= |φg(t)〉|g〉+ |φe(t)〉|e〉 (10.77)

where

|φg(t)〉= ∑
n

fn cos(Ωn−1t) (10.78)

|φe(t)〉= i∑
n

fn sin(Ωn−1t) (10.79)

In the case of the field initially in a coherent state, plot the Q-functions for
|φe(t)〉 and |φe(t)〉 at times equal to half way to the first revival and at the first
revival.

10.3 Compute the dressed states, and the corresponding eigenvalues, for the case in
which the field mode is detuned from the atomic resonance, Δ = ωa−ωc �= 0.

10.4 Define the trace-preserving density operator map on the state of a single two-
level system,

ρ �→ E (ρ) = σzρσz (10.80)

Sow that this leaves unchanged the diagonal elements of ρ in the eigenstates
of σz, but changes the phase of the off-diagonal elements by π.

10.5 Calculate the second order correlation function g(2)(τ) for resonance fluores-
cence in the presence of atomic dephasing (see (10.46).
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Chapter 11
CQED

Abstract In this chapter we will discuss two different physical systems in which a
single mode of the electromagnetic field in a cavity interacts with a two-level dipole
emitter. In the first example, the system is comprised of a single two-level atom
inside an optical cavity. The study of this system is often known as cavity quantum
electrodynamics (cavity QED) as it may be described using the techniques of the
previous chapter.

The second example is comprised of a superconducting Cooper pair box inside
a co-planar microwave resonator. The description of this system is given in terms
of the quantisation of an equivalent electronic circuit and thus goes by the name of
circuit quantum electrodynamics (circuit QED).

In both cases we are typically interested in the strong coupling regime in which
the single photon Rabi frequency g (the coupling constant in the Jaynes–Cummings
model) is lager than both the spontaneous decay rate, γ , of the two-level emitter and
the rate, κ , at which photons are lost from the cavity.

11.1 Cavity QED

The primary difficulty we face in cavity QED is finding a way to localise a single
two-level atom in the cavity mode for long time intervals. One approach, pioneered
by the Caltech group of Kimble [1], is to first trap and cool two-level atoms in a
magneto-optical trap (MOT) (see Chap. 18) and then let them fall into a high finesse
cavity placed directly below the MOT. If the geometry is correctly arranged then at
most one atom will slowly fall through the cavity at a time. Another approach is to
use constraining forces to trap a single atom in the optical cavity. This can be done
using the light shift forces of a far off resonant laser field on a two-level atom[2, 3]
(see Chap. 18), or it can be done using an ion trap scheme [4] (see Chap. 17). A
very novel way to get atoms from the MOT into the cavity deterministically has
been pioneered by the Chapman group in Georgia [5]. They use an optical dipole
standing wave trap as a kind of atomic conveyor belt to move atoms from the MOT
into the cavity.

213
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Fig. 11.1 A cavity QED scheme: a single two-level dipole emitter is fixed at a particular location
inside a Fabry-Perot cavity. The dipole is strongly coupled to a single cavity mode, a, but can emit
photons at rate γ into external modes. Photons are emitted from the end mirror of the cavity at
rate κ

Consider the scheme in Fig. 11.1. The interaction Hamiltonian between a single
two-level atom at the point�x in a Fabry–Perot cavity is given by

HI = g(�x)a†σ+ + g∗(�x)aσ− (11.1)

where

g(�x) =
(

μ2ωc

2h̄ε0V

)1/2

U(�x)≡ g0U(�x) (11.2)

This is obtained from (10.17) with the traveling wave mode function replaced by
a cavity standing wave mode function, U(�x). Here μ is the dipole moment for the
two-level system and V is the cavity mode volume defined by V =

∫
sin |U(�x)|2d3x.

Let us consider the interaction between a single cavity mode and a two-level sys-
tem. For the present we neglect the spatial dependance of g(�x). The master equation,
in the interaction picture, for a single two-level atom interacting with a single cavity
mode, at optical frequencies, is

dρ
dt

= −iδ [a†a,ρ ]− i
Δ
2

[σz,ρ ]− i[ε∗a + εa†,ρ ]− ig[aσ+ + a†σ−,ρ ]

+
κ
2

(2aρa†−a†aρ−ρa†a)+
γ
2
(2σ−ρσ+−σ+σ−ρ−ρσ+σ−) (11.3)

where ε represents a classical coherent laser field driving the cavity mode at fre-
quency ωL, the detuning between the cavity field and the driving field is δ = ωc−ωL

and Δ = ωa−ωL is the detuning between the two-level system and the driving field.
From this equation we can derive equations for first order field/atom moments;

d〈a〉
dt

= −
(κ

2
+ iδ

)
〈a〉− iε− ig〈σ−〉 (11.4)

d〈σ−〉
dt

= −
(γ

2
+ iΔ

)
〈σ−〉+ ig〈aσz〉 (11.5)
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d〈σz〉
dt

= −γ(〈σz〉+ 1)−2ig(〈aσ+〉− 〈a†σ−〉) (11.6)

Looking at these equations we see that we do not get a closed set of equations for
the first order moments, for example the equation for 〈σ−〉 is coupled to 〈aσz〉. A
number of procedures have been developed to deal with this. If there are many atoms
interacting with a single mode field, an expansion in the inverse atomic number can
be undertaken and we will describe this approach in Sect. 11.1.3. However a good
idea of the behaviour expected can be obtained simply by factorising all higher order
moments. This of course neglects quantum correlations and is thus not expected
to be able to give correct expressions for, say, the noise power spectrum of light
emitted from the cavity. Nonetheless it is often a good pace to start as it captures
the underlying dynamical structure of the problem. We thus define the semiclassical
equations as

α̇ = − κ̃
2

α− iε− igv (11.7)

v̇ = − γ̃
2

v + igαz (11.8)

ż = −2ig(αv∗−α∗v)− γ(z+ 1) (11.9)

where the dot signifies differentiation with respect to time and

κ̃ = κ + 2iδ (11.10)

γ̃ = γ + 2iΔ (11.11)

The first thing to consider is the steady state solutions, αs,zs,vs which are given
implicitly by

zs = −
[

1 +
n

n0(1 + Δ 2
1 )

]−1

(11.12)

αs = −2iε
κ̃

⎡
⎣1 +

2C(1 + iφ)−1(1 + iΔ1)−1

1 + n
n0(1+Δ 2

1 )

⎤
⎦
−1

(11.13)

vs =
2ig
γ̃

αszs (11.14)

where
n = |αs|2 (11.15)

is the steady state intracavity intensity and

φ = 2δ/κ (11.16)

Δ1 = 2Δ/γ (11.17)

n0 =
γ2

8g2 (11.18)
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C =
2g2

κγ
(11.19)

The parameter n0 sets the scale for the intracavity intensity to saturate the atomic
inversion and is know as the critical photon number. The parameter C is sometimes
defined in terms of the critical atomic number, N0, as C = N−1

0 . Why this name is
appropriate is explained in Sect. 11.1.3 where we consider cavity QED with many
atoms.

We can now determine how the steady state intracavity intensity depends on
the driving intensity. We first define the scaled driving intensity and intracavity
intensity by

Id =
4ε2

κ2n0
(11.20)

Ic =
n
n0

(11.21)

The driving intensity and the intracavity intensity are then related by

Id = Ic

[(
1 +

2C

1 + Δ 2
1 + Ic

)2

+
(

φ − 2CΔ1

1 + Δ 2
1 + Ic

)2
]

(11.22)

The phase θs of the steady state cavity field is shifted from the phase of the driving
field (here taken as real) where

tanθs =−φ −2Δ1C/(1 + Δ 2
1 + Ic)

1 + 2C/(1 + Δ 2
1 + Ic)

(11.23)

Equation (11.22) is known as the bistability state equation, a name that makes
sense when we plot the intracavity intensity versus the driving intensity, see Fig. 11.2.
It can be shown that the steady state corresponding to those parts of the curve with
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Fig. 11.2 The intracavity intensity versus the driving intensity, as given implicitly by (11.22), for
various values of the detuning between the atom and the driving field. In all cases we assume the
driving is on resonance with the cavity so that φ = 0 and C = 9. (a) Δ1 = 0, (b) Δ1 = 2, (c) Δ1 = 3
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negative slope are unstable. Clearly there are regions for which two stable steady
states coexist for a given driving intensity.

Cavity QED requires that we are in the strong coupling limit in which g0 > γ,κ .
Furthermore a necessary condition for strong coupling is that (n0,N0) << 1. In this
limit a single photon in the photon can lead to significant dynamics. One way to
make g0 large is to use a very small mode volume V and a large dipole moment. In
recent years, with optical Fabry-Perot cavities, it has been possible to achieve n0 ≈
10−3–10−4 and N0 ≈ 10−2–10−3. The mirrors of these cavities are highly reflective,
with reflectivity coefficients greater than 0.999998. This means that the inter mirror
spacing can be made very small giving a small mode volume. Typical parameters
for the Caltech group of Kimble, using atomic cesium, are [1]

(g0,κ ,γ) = (34,2,1.25)MHz (11.24)

which give critical parameters n0 = 0.0029 and N0 = 0.018. Even better perfor-
mance is possible using microtoroidal resonators, again implemented by the Caltech
group [6], or excitonic dipoles in quantum dots integrated into photonic band gap
materials, implemented by the Imamoglu group in Zurich [7]. A very different ap-
proach is to use Rydberg atoms, which have very large dipole moments, in super-
conducting microwave cavities. This approach has been pioneered by the group of
Haroche in Paris [8].

11.1.1 Vacuum Rabi Splitting

With the ability to trap a single atom in the cavity and cool it to very low ki-
netic energies, it becomes possible to measure the vacuum Rabi splitting. This is
the splitting energy, induced by the interaction in (11.1), of the degenerate states
|n = 0〉|e〉, |n = 1〉|g〉 where a†a|n〉 = n|n〉 is a photon number eigenstate for the
intracavity field. As we saw in Chap. 10, Sect. 10.2, these states are split in energy
by 2g. If g is large enough an excited atom is likely to emit a single photon into the
cavity mode and periodically reabsorb and remit before the excitation is lost.

Boca et al. [9] observed the vacuum Rabi splitting using a single Cs atom trapped
inside an optical Fabry-Perot cavity using a far off-resonance optical dipole trap.
An important breakthrough that enabled this experiment was the ability to cool the
atom (see Chap. 18) using a Raman cooling scheme for motion of the atom along
the cavity axis. The inferred uncertainties in the axial and transverse position of the
atom in the trap were Δzax ≈ 33 nm and Δrtrans ≈ 5.5 μm. The two electronic levels
used were the 6S1/2,F = 4→ 6P3/2,F

′ = 5 transition of the D2 with a maximum
single photon Rabi frequency of 2g0/2π = 68 MHz. The transverse atomic decay
rate is γ/2π = 1.3 MHz and the cavity decay rate is κ/2π = 2.05 MHz. Clearly this
is in the strong coupling regime.

A weak probe laser beam is incident on the cavity with a frequency ωp that can
be tuned through the atomic resonance frequency. The transmitted light is detected
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Fig. 11.3 The results of a measurement of the vacuum Rabi splitting performed by the Caltech
group. Six different studies are shown, together with a comparison to theory (solid line). From [9]

at a photodetector and thus the transmission coefficient T (ωp) can be measured.
The results for six cases in which one atom was present in the cavity are shown
in Fig. 11.3. Also shown as a solid line is the theoretical prediction based on the
steady state solution to the master equation. The asymmetry of the peaks is due to
the different Stark shifts for the Zeeman sub-levels of the excited state and optical
pumping.

11.1.2 Single Photon Sources

In Chap. 16 we discuss how single photons can be used to encode and process
information in a fully quantum coherent fashion. To realise such scheme however
requires a very special kind of light source that produces a train of transform limited
pulses each containing one and only one photon with high probability. Cavity QED
schemes can be used to generate such states. If an atom, coupled to a single mode
cavity field, was prepared in the excited state at time t = t0, it will emit a photon into
the cavity on a time scale determined by g−1. If we are in the strong coupling regime,
this photon will be reabsorbed by the atom on the same time scale. This is not what
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we want for a single photon source. In order to ensure the photon is emitted from
the cavity a time t = t0 + τ , we will need a bad cavity, i.e. one for which κ >> g,γ .
We also need to ensure that the atom does not emit a photon in any mode other than
the cavity mode, so that we require g >> γ . The net effect is that the rate for the
photon to be emitted preferentially into the output mode from the cavity is much
greater than its free-space spontaneous emission rate. This is know as the Purcell
effect.

Of course there is still some uncertainty in the emission of the photon from the
cavity as this is a Poisson process at rate κ and T is a random variable. The proba-
bility density for T is

p(T ) = κe−κT (11.25)

This has a mean given by κ−1, which also happens to be the uncertainty in the
emission time. Such a system necessarily has some “time jitter” in the single photon
pulses emitted from the cavity. Once the photon is emitted, we need to re-excite the
atom to generate another pulse. Let us suppose that the repetition time for this is T .
If we can arrange things so that T >> κ−1, the relative time jitter is small.

Of course the excitation itself is a dynamical process and takes some time. There
is some time scale associated with this excitation and the excitation pulse itself may
have some non trivial time dependence. There are two models of interest for the
excitation process. In the first model, a strong classical pump pulse excites a multi
level atomic system which then decays non radiatively into the excited state of the
dipole coupled to the cavity mode, see Fig. 11.4 (a). The problem with this scheme
is that the entry of the system into the excited state |e〉 is a random process (likely a
Poisson process). One might think this will cause no problems so long as Γ is large
enough. However the condition g >> γ means that these fluctuations are important
when the Purcell effect becomes large [10]. In the second model, (b), the classical
pulsed field together with the cavity field excites a two photon Raman transition to
state |2〉. The effective interaction Hamiltonian between the field and the atom is

Fig. 11.4 Two schemes for
a single photon source via
cavity QED. In (a), a pulsed
optical field excites the sys-
tem to an auxiliary excited
state (or states), which then
decays non radiatively into
the excited state |e〉. The tran-
sition |1〉 ↔ |2〉 is coupled to
a cavity mode with coupling
constant g. In (b) the pulsed
field together with the cavity
field excites a two photon
Raman transition to state |a〉

|3〉

|1〉 |1〉

|2〉 |2〉

|3〉

g

Ωp(t )

Ωp(t )

g

(a) (b)

Γ
Δ
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HI(t) = h̄
Ωp(t)g

Δ
(a†|2〉〈1|+ a|1〉〈2|) (11.26)

In effect, the coupling of the atom to the cavity field has become time dependent
through the dependance on the pump field, ωp(t).

In Fig. 11.5 we show the results of simulation for scheme (a) [11]. We as-
sume that the pump pulse excitation is instantaneous. The quality of such a single

Fig. 11.5 The probability to detect a single photon per unit time for scheme (a) in Fig. 11.4.
The instantaneous pump pulses are applied at times marked by the arrow. In (a) g is sufficiently
large that the photon can be exchanged between the cavity field and atom before emission. In (b)
however κ > g and the photon emission is dominated by a Poisson decay process. Also shown
are the corresponding results for a simulated g(2)(τ) experiment (c, d) and a HOM coincidence
experiment (e, f)
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photon source can be operationally determined by two experiments: a Hanbury-
Brown/Twiss experiment to measure g(2)(τ) and a Hong-Ou-Mandel two-photon
interference experiment (see Sect. 16.4.2 ). If we do indeed have a source of single
photon pulses with one and only one photon per pulse g(2)(τ) should be zero at
zero delay and peak at the pulse repetition rate. Like wise if we mode match two
identical single photon pulses on a 50/50 beam splitter as in the Hong-Ou-Mandel
two-photon interference experiment, the coincidence rate for zero delays between
the pulses should go to zero. Clearly we do not want to be in a regime where signif-
icant Rabi oscillations can occur before photon emission.

The second scheme, (b), has been implemented by Keller et al. [4] using a ion
trap CQED scheme. They used a laser cooled Ca+ ion confined to the centre of an
optical cavity with a linear RF trap. The levels are given as |1〉 → 42S1/2, |2〉 →
32D3/2, |3〉 → 42P1/2. The pump pulse had a carrier wavelength of 397 nm while
the Raman resonance was tuned to the cavity resonant wavelength of 866 nm. The
single photon Rabi frequency was g/2π = 0.92 MHz. The spontaneous decay rate
of the P1/2→ D3/2 transition was γ/2π = 1.69 MHz and the cavity decay rate was
κ/2π = 1.2 MHz. The Raman pump pulse had a predefined intensity profile of up
to 6 ms duration and was repeated at a rate of 100 kHz. An interesting feature of
the experiment was that the temporal shape of the pump pulse could be controlled
to some extent. The output from the cavity is then directed towards a avalanche
photodiode detector with overall detection efficiency of about η = 0.05. The time
of each photodetection event is recorded with a 2 ns resolution and the resulting
arrival time distribution gives the detection probability per unit time, n(t) for the
single photon (with n(t) = η〈a†(t)a(t)〉, see Sect. 16.4.2). The results are shown
in Fig. 11.6 for various choices for the temporal structure of the pump pulse. Also
shown is a full simulation of n(t) based on the master equation. Keller et al. also
measured the cross correlation events in a Hanbury-Brown/Twiss experiment. The
peak suppression at zero delay was by a factor of the order of 105 compared to the
counts in all the other peaks.

11.1.3 Cavity QED with N Atoms

There are a large class of experiments in which more than one atom (for example
in an atomic vapour) interacts with a single cavity mode. In that case a single cav-
ity photon is shared over many atomic excitations, and so the effect on any single
atom is reduced. In this case we might expect that an approximate scheme based
on an expansion in N−1 where N is the number of atoms involved, might be pos-
sible. We will present one approach to this problem developed by Drummond and
Walls [12].

The interaction Hamiltonian in (11.1) becomes

HI = g0

N

∑
j=1

a†σ ( j)
− ei�k.�x j + aσ ( j)

+ e−i�k.�x j (11.27)
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Fig. 11.6 The probability to detect a single photon per unit time, versus time, for scheme (b) in the
experiment of Keller et al. [5], with various pump pulse shapes (dashed line): (a), Strong Gaussian
pump; (b), Weak Gaussian pump; (c), Square-wave pump; (d), Double-peaked pump

= g(a†S + aS†) (11.28)

where we have used plane wave modes to be specific, and where we have defined
the collective atomic polarisation operators as

S =
N

∑
j=1

σ ( j)
− ei�k.�x j (11.29)

This immediately suggests that we should also define the collective atomic inversion
operator

D =
N

∑
j=1

σ ( j)
z (11.30)

These operators obey the following commutation relations,

[S†,S] = D (11.31)

[D,S] = −2S (11.32)

[D,S†] = 2S† (11.33)
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We assume that each atom undergoes independent spontaneous emission out of
the cavity mode and that such emitted photons are not reabsorbed. The master equa-
tion then takes the form

dρ
dt

= −iδ [a†a,ρ ]− i
Δ
2

[D,ρ ]− i[ε∗a + εa†,ρ ]− ig[a†S + aS†,ρ ]

+
κ
2

(2aρa†−a†aρ−ρa†a)

+
γ
2

N

∑
j=1

(2σ ( j)
− ρσ ( j)

+ −σ ( j)
+ σ ( j)

− ρ−ρσ ( j)
+ σ ( j)

− ) (11.34)

We next define the normally ordered characteristic function

χ(�λ ) = Tr{ρΞ(�λ)} (11.35)

where
Ξ(�λ ) = eiλ5S†

eiλ4Deiλ3Seiλ2a†
eiλ1a (11.36)

with�λ T = (λ1,λ2,λ3,λ4,λ5). The positive P-representation for the atom-field state
is then defined as the multi-dimensional Fourier transform of the characteristic func-
tion,

P(�α) =
1

(2π)5

∫
χ(�λ )e−i�λ�α d5λ (11.37)

where �αT = (α,β ,v,D,u).
To obtain an equation of motion for P(�α) we first need to find an equation of

motion for the characteristic function, χ(�λ) and then integrate by parts. Consider,
for example, the term arising from the interaction with the cavity field mode,

(
dχ
dt

)
I
=−ig〈[Ξ ,a†S]〉− 〈[Ξ ,aS†]〉 (11.38)

We can use the commutation relations for these operators to show that, for example,

〈[Ξ ,aS†]〉=
(

λ1
∂

∂λ3
− (1− e2iλ4)

∂ 2

∂λ2∂λ3
− iλ5

∂ 2

∂λ2∂λ4
+ λ 2

5
∂ 2

∂λ2∂λ5

)
χ(�λ)

(11.39)

The corresponding term in the equation of motion for P(�α) is

(
∂P
∂ t

)
I
= −ig

(
− ∂

∂α
v +(1− e−2∂D)β v +

∂ 2

∂u2 β u− ∂
∂u

β D

)
P (11.40)

+ig

(
− ∂

∂β
u +(1− e−2∂D)αu +

∂ 2

∂v2 αv− ∂
∂v

αD

)
P (11.41)

where ∂D = ∂
∂D .
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A problem is immediately apparent: this term contains infinite order derivatives
and thus the resulting equation is not of Fokker–Planck form and does not define a
stochastic process. However a careful analysis shows that the exponential may be
truncated to second order in an asymptotic expansion in N−1, which for N >> 1 is
a reasonable approximation. The result after truncating is

∂P
∂ t

= [−∂α [−iε− κ̃α/2− igv]− ∂v[igαD− γ̃v/2]

−∂D[−γ(D+ N)−2ig(uα− vβ )]
+∂ 2

v [igαv]+ ∂ 2
D[γ(D+ N)−2ig(uα− vβ )]+ CC

]
P (11.42)

where CC stands for complex conjugate under the condition that v∗ �→ u,
u∗ �→ v, α∗ �→ β , β ∗ �→ α . The corresponding stochastic differential equations are

α̇ = −κ̃α/2− iε− igv +Γα

β̇ = −κ̃∗α/2 + iε + igv +Γβ

v̇ = −γ̃v/2 + igαD+Γv

u̇ = −γ̃∗u/2− igβ D+Γu

Ḋ = −γ(D+ N)−2ig(αu−β v)+ΓD (11.43)

which should be compared to the single atom semiclassical equations to which
they reduce when noise is neglected and we make the replacements β �→ α∗,
u �→ v∗ N �→ 1. The only non-zero noise correlation functions are

〈Γv(t)Γv(t ′)〉 = 2igαv δ (t− t ′) (11.44)

〈Γu(t)Γv(t ′)〉 = 2igαu δ (t− t ′) (11.45)

〈ΓD(t)ΓD(t ′)〉 = 2γ(D+ N)−4ig(αu−β v)δ (t− t ′) (11.46)

These equations now provide a basis to obtain a phenomenological description
of optical bistability in terms of an intensity dependent cavity detuning. To pro-
ceed we will assume that γ >> κ so that the atomic variables can be assumed to
reach a steady state slaved to the instantaneous values of the field variables. This
is called adiabatic elimination. The next step is to approximate the noise correla-
tion functions for the atomic variables by replacing u,v by the steady state values of
the deterministic equations for these variables. This is equivalent to a linearisation
around the deterministic steady state. The validity of this approximation rests on
N >> 1. The resulting atomic variables are then substituted into the field equations
to give

α̇ =−iε− κ̃α/2− 2g2Nα
γ̃Π(αβ )

+Γ (t) (11.47)

where

Π(αβ ) = 1 +
αβ

n0(1 + Δ 2
1)

(11.48)
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with n0 the saturation photon number and Δ1 as previously defined in (11.17 and
11.18).

〈
Γ(t)Γ(t ′)

〉
=

κCx2

(1 + X + Δ2
1)3

[
(1− iΔ1)3 +

X2

2

]
δ (t− t ′)

〈
Γ†(t)Γ(t ′)

〉
=

κCx2

(1 + X + Δ2
1)3

[
2X +

X2

2

]
δ (t− t ′) (11.49)

with x = α/
√

n0 and X = αβ/n0.

11.2 Circuit QED

Superconducting coplanar microwave cavities [13] enable a new class of experi-
ments in circuit quantum electrodynamics in the strong coupling regime [14]. The
dipole emitter in this case is a single superconducting metalic island separated by
tunnel junctions form a Cooper pair reservoir. Under appropriate conditions it is
possible for the charge on the island to be restricted to at most a single Cooper pair.
This Cooper pair tunneling on an off the island constitutes a single large electric
dipole system.

A possible experimental implementation is shown in Fig. 11.7.
The coupling between a Cooper pair box charge system and the microwave field

of circuit QED is given by [13]

H = 4Ec ∑
N

(N−ng(t))2|N〉〈N|− EJ

2 ∑
N=0

(|N〉〈N + 1|+ |N + 1〉〈N|) (11.50)

ground

ground

V  + V(t)

0

Cooper pair box

Vg

tunnel junctionsN = 0,1

Φ

Fig. 11.7 A co-planar microwave resonator is coupled to a Cooper pair box electric dipole
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where

EC =
e2

2CΣ

ng(t) =
CgVg(t)

2e

with CΣ the capacitance between the island and the rest of the circuit, Cg is the
capacitance between the CPB island and the bias gate for the island, and Vg(t) is the

total voltage applied to the island by the bias gate composed of a DC field, V (0)
g and

microwave field in the cavity, v̂(t). Thus we can write Vg(t) = V (0)
g + v̂(t), where the

hat indicates a quantisation of the cavity field. Including the time dependent cavity
field we can write

ng(t) = n(0)
g + δ n̂g(t) (11.51)

where

δ n̂g(t) =
Cg

2e
v̂(t) (11.52)

The Hamiltonian in (11.50) is written in the Cooper pair number basis. In this
basis the electrostatic energy of the first term is quite clear. The Josephson energy
term describes tunneling of single Cooper pairs across the junction. This term is
more traditionally (i.e. in mean-field theory) written in the phase representation as
EJ cosθ . The connection between these two representations is discussed in [15].

If the Cooper pair box is sufficiently small, the electrostatic charging energy is
so large that it is very unlikely that there will be more than a single Cooper pair on
the island at any time. We can then usual restrict the CPB Hilbert space to N = 0,1,
we can write the Hamiltonian as

H =−2EC(1−2n(0)
g )σ̄z− EJ

2
σ̄x−4ECδ n̂g(t)(1−2n(0)

g − σ̄z) (11.53)

where σ̄z = |0〉〈0−|1〉〈1|, σ̄x = |1〉〈0|+ |0〉〈1|. Define the bare CPB Hamiltonian
as

HCPB =−2EC(1−2n(0)
g )σ̄z− EJ

2
σ̄x (11.54)

and diagonalise it as

HCPB =
ε
2

σz (11.55)

where

ε =
√

E2
J +[4EC(1−2N(0)

g )]2 (11.56)

and now the Hamiltonian takes the form,

H = h̄ωra
†a +

ε
2

σz−4ECδ n̂g(t)[1−2n(0)
g − cosθσz + sinθσx] (11.57)

where we have now included the free Hamiltonian for the microwave cavity field,
and
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θ = arctan

(
EJ

4EC(1−2n(0)
g )

)
(11.58)

Operating at the charge degeneracy point, n(0)
g = 1/2 so that θ = π/2, the

Hamiltonian becomes

H = h̄ωca†a +
ε
2

σz−4EC
Cg

2e
v̂(t)σx (11.59)

= h̄ωca†a +
ε
2

σz− h̄g(a + a†)σx (11.60)

where the coupling constant is

h̄g = e
Cg

CΣ

√
h̄ωr

Lc
(11.61)

This can be as large as 50 MHz[13]. The circuit resonance is typically at ωc ≈
1 GHz. However, we can detune the qubit from this resonant frequency by a
few MHz [14]. We can then make the rotating wave approximation and take the
Hamiltonian in the interaction picture to be the usual Jaynes–Cummings form

HI = h̄δaa†a + h̄g(aσ+ + a†σ−) (11.62)

with δa = ωc−ωb is the detuning between the cavity resonance and the CPB and
h̄ωb = ε .

Exercises

11.1 A laser may be modeled by the master equation in (11.34) with ε = 0 and
with the addition of the incoherent pump term

Lpρ =
r
2

N

∑
j=1

(2σ ( j)
+ ρσ ( j)

− −σ ( j)
− σ ( j)

+ ρ−ρσ ( j)
− σ ( j)

+ ) (11.63)

We will also assume that ωA = ωc

(a) Show that the Fokker-Planck equation is now given by

∂P
∂ t

= [−∂α [−κα
/

2− igv]− ∂v[igαD− γ‖v
/

2]

−∂D[−γ‖(D−D0)−2ig(uα− vβ )]

+∂ 2
v [igαv]−2r

∂ 2

∂v∂D
+ NP

∂ 2

∂v∂u
+∂ 2

D[r(N−D)+ γ(D+ N)−2ig(uα− vβ )+ CC]P (11.64)
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where γ‖ = γ + r and

D0 = N

(
r− γ
r + γ

)
(11.65)

(b) By considering the deterministic equations of motion show that laser
action requires D0 > 0.

(c) Show that the steady state field amplitude obeys the equation

x

(
1− C1

1 + |x|2
)

= 0 (11.66)

where x = α/
√

n0 with

n0 =
γγ‖
8g2 (11.67)

C1 =
4g2D0

γ‖κ
(11.68)

(d) Define I = |x|2. Show that the stable solutions are

I =

{
0 ifC1 < 1

C1−1 ifC1 > 1
(11.69)

References

1. R. Miller, T.E. Norththrop, K.M. Birnbaum, A. Boca, A.D. Boozer, H.J. Kimble: J. Phys.
B: At. Mol. Opt. Phys. 38, s551 (2005)

2. J. Ye, D.W. Vernooy, H.J. Kimble: Phys. Rev. Lett. 83, 4987 (1999)
3. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P.W.H. Pinske, G. Rempe: quant-

ph/072162 (2007)
4. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther: Nature 431, 1075 (2004)
5. K. Fortier, S.Y. kim, M.J. Gibbons, P. Ahmadi, M.S. Chapman: Phys. Rev. Letts. 98, 233601

(2007)
6. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, H.J. Kimble: Nature, 443, 671 (2006)
7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Attüre, S. Gulde, S. Fält, E.L. Hu,
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Chapter 12
Quantum Theory of the Laser

Abstract The quantum theory of the laser was developed in the 1960s principally
by the schools associated with H. Haken, W.E. Lamb and M. Lax, see [1, 2, 3, 4].
Haken and Lax independently developed sophisticated techniques to convert opera-
tor master equations into c-number Fokker–Planck equations or equivalent Langevin
equations.

In this chapter we shall follow the approach of Scully and Lamb [3] to compute
photon statistics and the linewidth of the laser. In the Scully–Lamb treatment the
pumping is modelled by the injection of a sequence of inverted atoms into the laser
cavity. In a usual laser, with a thermal pumping mechanism, a Poisson distributed
sequence of inverted atoms is assumed. Introduction of a Bernoulli distribution en-
ables a more general class of pumping mechanisms to be considered, including the
case of the regularly pumped laser. Diode lasers with more regular pumping than
usual lasers have recently been shown to give rise to sub-shot-noise photocurrent
fluctuations.

12.1 Master Equation

A single mode cavity field is excited by a sequence of atoms injected into the cavity.
Let ti be the arrival time of the atom i in the cavity and τ the time spent by each atom
in the cavity. The change in the density operator for the field due to the interaction
with the ith atom may be represented by

ρ(ti + τ) = P(τ)ρ(ti) . (12.1)

The explicit form of P(τ) depends on the particular atomic system used in the
excitation process. The model we will employ is indicated in Fig. 12.1.

Of the four levels, only levels |1〉 and |2〉 are coupled to the intracavity field,
which thus are referred to as the lasing levels. Each of these levels may then decay.
Level |1〉 decays to level |3〉 at a rate γ1 while level |2〉 decays to level |4〉 at a rate γ2.

231
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Fig. 12.1 Schematic repre-
sentation of the four-level
atomic model of a laser. Only
levels 1 and 2 at coupled to
the laser field

We will assume that these decay rates are very much greater than the spontaneous
decay rate of level |2〉 to level |1〉, and thus we neglect spontaneous emission in the
lasing levels. Each atom is prepared in the excited state |2〉 prior to interaction with
the cavity field. In the usual laser system the lifetimes γ−1

1 and γ−1
2 are much shorter

than the time τ spent by each atom in the cavity. This means that each atom rapidly
attains a steady state in passing through the cavity and the pump operation P(τ) is
effectively independent of the time τ . The effect of a single atom on the state of the
field may then be written as

ρ ′ = Pρ , (12.2)

where we have dropped the time dependence in ρ for simplicity, the prime serving
to indicate the state of the field after the passage of a single atom through the cavity.
We may represent the initial state of the field quite generally as

ρ =
∞

∑
n,m=0

ρn,m(0)|n〉〈m| . (12.3)

In Appendix [12.A] we solve the master equation for the system over the time τ
under the assumptions discussed above. The result is

ρ ′ =
∞

∑
n,m=0

ρn,m(0)(Anm|n〉〈m|+ Bnm|n + 1〉〈m+ 1|) , (12.4)

where the explicit expressions for Anm, Bnm are given in the appendix.
We now assume that each atom contributes independently to the field. (This as-

sumption remains valid even if there is more than one atom in the cavity at any time,
provided that they are sufficiently dilute.) Thus, if k atoms are passed through the
cavity from time 0 to time t the field density operator at time t is given by

ρ(t) = Pkρ(0) . (12.5)

More generally, however, not all atoms entering the cavity are prepared in the ex-
cited state. Let the probability for an excited atom to enter the cavity between t and
t + Δt be rΔt, r being the average injection rate. This defines a Poisson excitation
process. Thus the field at time t +Δt is made up of a mixture of states corresponding
to atomic excitation and no atomic excitation, thus

ρ(t + Δt) = rΔtPρ(t)+ (1− rΔt)ρ(t) . (12.6)
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In the limit Δt→ 0 we have
dρ(t)

dt
= rU ρ(t) (12.7)

where
U = P−1 . (12.8)

We must now include the decay of the cavity field through the end mirrors. This
is modelled in the usual way by coupling the field to a zero temperature heat bath.
Thus the total master equation for the field density operator is

dρ
dt

= rU ρ +
κ
2

(2aρa†−a†aρ−ρa†a) , (12.9)

where κ is the cavity decay rate. This is the usual Scully–Lamb laser master
equation.

In the special case that γ1 = γ2 = γ the matrix elements of U in the number basis
are greatly simplified. In this case the master equation in the number basis may be
written as

dρnm

dt
= G

( √
nm

1 +(n + m)/2ns
ρn−1,m−1

− (m+ n + 2)/2 +(m−n)2/8ns

1 +(n + m+ 2)/2ns
ρnm

)

+
κ
2

[2
√

(n + 1)(m+ 1)ρn+1,m+1− (n + m)ρnm] , (12.10)

where
G =

r
2ns

(12.11)

and

ns =
γ2

4g2 . (12.12)

where g is the coupling strength between the cavity and the levels 1 and 2.
we have neglected terms ∝ n−2

s in the denominators of the first two coefficients.

12.2 Photon Statistics

The photon number distribution obeys the equation

dpn

dt
=−G

(
n + 1

1 +(n + 1)/ns
pn− n

1 +(n/ns)
pn−1

)

+ κ(n + 1)pn+1−κnpn . (12.13)
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The gain coefficient G is defined by

G =
rγ1

2γ + ns
, (12.14)

where γ+ = (γ1 + γ2)/2.
If we expand the denominators in (12.13) to first-order an approximate equation

for the mean photon number may be obtained, namely

dn̄
dt

= (G−κ)n̄− G
ns

(n2 + 2n̄+ 1)+ G . (12.15)

If G > κ there will be an initial exponential increase in the mean photon number.
Thus G = κ is the threshold condition for the laser.

The steady state photon number distribution may be deduced directly from
(12.13), using the condition of detailed balance. It may be written in the form

pss
n = N

(Gns/κ)n+ns

(n + ns)!
, (12.16)

where N is a normalisation constant. Below threshold (G < κ) this distribution may
be approximated by a chaotic (thermal) distribution with the mean n̄ = G/(κ −G)
(Exercise 12.1). Above threshold (G > κ) the mean and variance are given, to a
good approximation, by (Exercise 12.2),

n̄ = ns

(
G
κ
−1

)
, (12.17)

V (n) = n̄+ ns . (12.18)

Well above threshold n̄� ns and thus V (n)≈ n̄, indicating an approach to Poisson
statistics. In Fig. 12.2 we show the exact photon number distribution for below and
above threshold. The transition from power law to the Poisson distribution is quite
evident.

Photon counting experiments by Arecchi [5], Johnson et al. [6], and Morgan and
Mandel [7], demonstrated that the photon statistics of a laser well above threshold,
approaches a Poisson distribution. In Fig. 12.3 we present the results of photon
counting measurements by Arecchi on both thermal and laser light. A comparison
of the experimental data with the thermal and Poisson distributions is also shown.

12.2.1 Spectrum of Intensity Fluctuations

Equations (12.17 and 12.18) give the photon number fluctuations for the internal
cavity mode. This quantity, however, is not directly observable. We must now deter-
mine how the photon number fluctuations inside the cavity determine the intensity
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Fig. 12.2 The steady state photon number distribution of a laser operating above and below thresh-
old. In (a) G/κ = 5.0, in (b) G/κ = 0.25. In both cases ns = 2

Fig. 12.3 Experimental results for the steady state photon number distribution for a thermal (i.e.
Gaussian) light source and a laser operator above threshold. The laser exhibits Poissonian photon
number statistics [5]
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fluctuations in the many mode field to which it is coupled through the output mir-
rors. This is an application of the general input/output theory described in Chap. 7.

A single photoelectron detector placed at the output of the cavity measures a
photocurrent given by

i(t) = eξ 〈b†
out(t)bout(t)〉 , (12.19)

where e is the electronic charge, and ξ = 2ε0cA/�ω with A the area of the detector
surface. (We will assume unit quantum efficiency and unit amplification, for sim-
plicity.) The output field bout(t) is related to the internal field and the input field by

bout(t) =
√

κa(t)−bin(t) . (12.20)

We will assume the input field to be in the vacuum state. In that case

i(t) = eξ κ n̄ , (12.21)

where n̄ is the mean photon number inside the cavity.
To determine the noise properties of the output field, the appropriate detector

quantity is i(0)i(τ). The theory of photo-electron detection (Chap. 3) enables this to
be related to the intensity fluctuations by

i(0)i(τ) = eξ 〈b†
out(0)bout(0)〉δ (τ)+ e2ξ 2〈b†

out(0)bout(0)〉2
+ e2ξ 2〈: I(0), I(τ) :〉 (12.22)

where : : denotes normal and time ordering and

I(τ) = b†
out(τ)bout(τ). (12.23)

The first two terms in (12.22) represent a dc term and a δ -correlated shot-noise term.
The last term carries information on a possible reduction in intensity fluctuations.
We now define the normalised power spectrum

P(ω) =
2

e2ξ 2

∞∫
0

dτ cos(ωτ)i(0)i(τ) . (12.24)

Using (12.20) one may show that

〈: I(0), I(τ) :〉= κ2(〈a†(0)a†(τ)a(τ)a(0)〉− 〈a†(0)a(0)〉2) . (12.25)

Thus
i(0)i(τ)

e2ξ 2 = κ n̄(1−κ n̄)+ κ n̄δ (τ)+ κ2g(τ) (12.26)

where
g(τ) = 〈a†(0)a†(τ)a(τ)a(0)〉 . (12.27)

We are only interested in the steady state fluctuations of the output field. In which
case we can show that g(τ) = n̄2 and thus
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P(ω) = κ n̄ . (12.28)

This flat photocurrent spectrum is the shot-noise limit of the laser.

12.3 Laser Linewidth

Well above threshold the laser produces Poisson photon statistics. A coherent state
has the same photon statistics, and this suggests that well above threshold the laser
might be producing a coherent state. This is not the case. While the intensity of the
laser is stabilised with a Poissonian distribution the phase of the laser undergoes a
diffusion process. The effect of this phase diffusion is to cause a decay in the mean
amplitude of the laser field, as the phase becomes uniformly distributed over 2π.
The rate of amplitude decay Γ is thus a direct measure of the phase diffusion rate.

We will only discuss the case γ1 = γ2 = γ . The mean amplitude is defined by

〈a(t)〉=
∞

∑
n=0

n1/2ρn,n−1(t) . (12.29)

Using (12.10) we find

d〈a〉
dt

=−G
2

∞

∑
n=0

(1/4ns)−1
1 +(2n + 1)/2ns

√
nρn,n−1 . (12.30)

Assuming the laser operates well above threshold we can replace n by n̄ in the
denominator of each coefficient. Then as n̄� ns

d〈a〉
dt

=− G
8n̄
〈a〉 . (12.31)

Thus the phase diffusion rate is inversely proportional to the intensity of the laser.
All second-order phase dependent correlation functions will decay at a similar rate.
In particular, the two-time correlation function

F(τ) = 〈a†(τ)a(0)〉 (12.32)

will decay at the rate Γ = G/8n̄, i.e.

F(τ) = n̄e−Γτ . (12.33)

The Fourier transform of this function defines the laser spectrum

S(ω) =
n̄

ω2 + Γ2 , (12.34)

and thus the laser linewidth is simply
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Γ =
G
8n̄

. (12.35)

It must be emphasised, however, that these results only apply well above threshold.

12.4 Regularly Pumped Laser

The Poissonian photon statistics of a laser reflect the contributions from the random
pumping mechanism and spontaneous emission, which lead to an irregular photo-
emission sequence. By suppressing the pump fluctuations, sub-Poissonian photon
statistics and thus sub-shot-noise photo-current fluctuations, are possible. This has
been demonstrated in recent experiments by Machida et al. [8] and also Richardson
and Shelby [9] with semiconductor lasers. The pump amplitude fluctuations were
reduced by high impedance suppression of the electron injection rate.

We shall demonstrate how the Scully–Lamb laser theory can readily be modi-
fied to incorporate regular pumping. Regular pumped lasers have been considered
theoretically by a number of researchers [10, 11, 12, 13, 14]. We shall follow the
approach of Golubov and Sokolov [10], with some modifications.

Consider a time interval Δt short compared to the time scale on which the field
is changing due to damping through the end mirrors. However, the time Δt is very
long compared to the time interval between successive pumping atoms entering the
cavity. Divide the interval Δt into N steps of length τ . The probability for an excited
atom to enter the cavity at time t j = jτ is defined to be p. The fundamental proba-
bilities of interest are then the probability of r excited atoms to enter the cavity at
any of the N time steps, over the interval Δt. These probabilities are

Pr(Δt) =
Δt(Δt− τ)(Δt−2τ) . . .(Δt− rτ)

τrr!

(
p

1− p

)r

× exp

[
Δt
τ

ln(1− p)
]

. (12.36)

To first order in Δt this is

Pr(t) = (−1)r+1
(

p
1− p

)r Δt
rτ

. (12.37)

Between each atom entering the cavity the field evolves freely according to

T (τ) = e−iωaτa†aρe+iωaτa†a . (12.38)

The change in the state of the field due to the passage of a single atom is given by
(12.4). It is a simple matter to prove that the operation describing the effect of the
pump atoms P commutes with the free evolution operator T (if this is not the case
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a simple master equation for the field state cannot be obtained in general). Thus the
change in the state of the field over a time Δt is

ρ(t + Δt) = T (Δt)

[
N

∑
n=0

Pn(Δt)Pnρ(t)

]
(12.39)

(i.e., we can factor out the free evolution between each time step). We henceforth
assume we are working in the interaction picture and drop the free evolution term.
As we assume τ � Δt we extend the upper limit on the sum to ∞, then

ρ(t + Δt) = ρ(t)+
Δt
τ

ln(1− p)ρ(t)

+
Δt
τ

[
p

1− p
P− 1

2

(
p

1− p

)2

P2 + . . .

]
ρ(t) . (12.40)

From which we obtain

dρ
dt

=
1
τ

ln(1− p)ρ(t)+
1
τ

ln

(
1 +

p
1− p

P

)
ρ(t) (12.41)

= R ln(1 + pU )ρ(t) , (12.42)

where R = τ−1 is the pumping rate for a perfectly regular process (p = 1) and

U = P−1 . (12.43)

We can define an average injection rate r = pR, then

dρ
dt

=
r
p

ln(1 + pU )ρ(t) . (12.44)

In this form we can take the Poisson limit defined by p→ 0, R→ ∞, such that
pR = constant = r. In this limit the equation reduces to that for a normal laser.

The difficulty in discussing the regularly pumped laser is the logarithm term in
(12.42). As U represents the change in the state of the field due to a single atom
we might expect U to be in some sense small. With this in mind we expand the
logarithm to second order. Unfortunately this leads to a rather pathological master
equation. However, the procedure does give accurate results for the first-and second-
order moments of the photon number.

The photon number distribution now obeys the equation

dpn

dt
= κ [−npn +(n + 1)pn+1]+ r(−an+1Pn + anpn−1)

+
pr
2

[−a2
n+1pn + an(an + an+1)pn−1−anan−1 pn−2] , (12.45)
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where

an =
Gn

r(1 +(n/ns))
. (12.46)

To obtain the stationary state variances is a rather more difficult process than for the
Poisson pumped case. The mean photon number above threshold is not changed,
however the variance is given by

V (n) = n̄

(
1− pγ1

2(γ1 + γ2)

)
+ ns . (12.47)

We consider some special cases of this result for regular pumping, p = 1. Far
above threshold n̄� ns so we may neglect the last term in (12.47). When the decay
rates are equal, the photon number variance is

V (n) =
3n̄
4

(γ1 = γ2) . (12.48)

In this case spontaneous emission from level |2〉 is contributing to the noise. This
effect may be reduced by increasing the decay rate of the lower level with respect to
the upper level, γ1� γ2. In this case

V (n) =
n̄
2
(γ1� γ2) . (12.49)

Thus the width of the photon number distribution inside the cavity is reduced
by half.

We now consider intensity fluctuations of the light emerging from the cavity. We
may obtain a solution for the normally ordered two-time correlation function g(τ),
from the master equation (12.45) assuming a Gaussian steady state distribution. The
result is

g(τ) = n̄2 +[V (n)− n̄]e−δτ , (12.50)

where

δ = κ
n̄/ns

1 +(n̄/ns)
. (12.51)

Substituting (12.47 and 12.50) into (12.26) the spectrum of the photocurrent fluctu-
ations is given by

P(ω) = κ n̄

(
1 +

2κQδ
ω2 + δ 2

)
, (12.52)

where

Q =
V (n)− n̄

n̄
(12.53)

=− pγ1

2(γ1 + γ2)
+

ns

n̄
. (12.54)
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The Q parameter measures the deviation of the intracavity field from Poisson statis-
tics. In the limit of regular pumping (p = 1) and far above threshold

P(ω) = κ n̄

(
1− γ1κ2

(γ1 + γ2)(κ2 + ω2)

)
. (12.55)

Thus at cavity resonance (ω = 0),

P(0) = κ n̄(1 + 2Q)

= κ n̄
γ1

γ1 + γ2
. (12.56)

The first term in the first equation represents the shot-noise contribution. A negative
value of Q leads to a reduction below the shot-noise limit. If the decay rates are
equal (γ1 = γ2), spontaneous emission is not suppressed and

P(0) =
κ n̄
2

, (12.57)

which represents a 50% reduction below the shot-noise level. However, in the limit
γ1� γ2, Q approaches – 0.5 far above threshold and

P(ω) = κ n̄

(
1− κ2

κ2 + ω2

)
. (12.58)

Then at cavity resonance, the fluctuation spectrum is zero. This may be compared
with the light inside the cavity where the photon number fluctuations were only
reduced by one half. This result has the same interpretation as the limit to the
intracavity squeezing in a parametric oscillator; there is a destructive interference
from the vacuum fluctuations reflected from the cavity mirror and the reduced noise
light emerging from the cavity. This results in no fluctuations in the output light on
resonance.

In Fig. 12.4 we show the results of the experiment by Machida et al. [8] for a
regularly pumped semiconductor laser.

Fig. 12.4 The normalised
amplitude noise level versus
the pump rate for a laser with
pump noise (dashed) and
with pump noise suppressed
(solid) [11]
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12.A Appendix: Derivation of the Single-Atom Increment

Consider a single multilevel atom (Fig. 12.1) prepared in the state |2〉. Level |1〉 is
damped at the rate γ1 to level |3〉 and level |2〉 is damped at the rate γ2 to level |4〉.
Only levels |1〉 and |2〉 interact with the cavity field. The master equation describing
the dynamics of this system is

dρ
dt

=ig[a†σ12
− + aσ12

+ ,ρ ]

+
γ1

2
(2σ13

− ρσ13
+ −σ13

+ σ13
− ρ−ρσ13

+ σ13
− )

+
γ2

2
(2σ24

− ρσ24
+ −σ24

+ σ24
− ρ−ρσ24

+ σ24
− ) (12.59)

(we ignore spontaneous emission on the lasing levels |1〉, |2〉). We will present a
complete operator solution to the master equation over the time τ and then consider
the limit γiτ� 1.

Define the operation

J ρ = γ1σ13
− ρσ13

+ + γ2σ24
− ρσ24

+ (12.60)

and the rate operator

R = γ1σ13
+ σ13

− + γ2σ24
+ σ24

− (12.61)

= γ1|1〉〈1|+ γ2|2〉〈2| . (12.62)

The solution to the master equation may then be written formally

ρ(t) =S (t)ρ(0)+
t∫

0

dt1S (t− t1)J S (t1)ρ(0)

+
t∫

0

dt1

t1∫
0

dt2S (t− t1)J S (t1− t2)J S (t2)ρ(0)

+ · · · , (12.63)

where
S (t)ρ = B(t)ρB†(t) , (12.64)

with
B(t) = exp[−ig(a†σ12

− + aσ12
+ )− γ1t|1〉〈1|− γ2t|2〉〈2|] . (12.65)

For

ρ(0) = |2〉〈2|⊗ρF(0) (12.66)
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=
∞

∑
n, m=0

ρnm(0)|n,2〉〈m,2| , (12.67)

with
|n,2〉= |n〉F⊗|2〉 . (12.68)

Note that after the action of J the atom is in a mixture of the states |3〉 and |4〉 and
is then decoupled from the field. All further action of S (t) is just the identity, and
J destroys the state. The series thus truncates at first order.

Now one may use the eigenstates of the free Hamiltonian (Chap. 10)

|n, +〉= 1√
2
(|n, 2〉+ |n + 1, 1〉) , (12.69)

|n, −〉= 1√
2
(|n, 2〉− |n + 1, 1〉) , (12.70)

to show that

S (t)(|n, 2〉〈m, 2|) =(c+
n (t)|n, +〉+ c−n (t)|n, −〉)

× (〈m,+|c+
m(t)∗+ 〈m,−|c−m(t)∗) (12.71)

where

c+
n (t) =

−iexp
(− γ+t

2

)
2
√

2ΔΩ(n)

{[
−iΩ(n)(1−Δ)+

γ−
2

]
eiΔΩ(n)t

+
[

iΩ(n)(1 + Δ)− γ−
2

]
e−iΔΩ(n)t

}
(12.72)

and

c−n (t) =
−iexp

(− γ+t
2

)
2
√

2ΔΩ(n)

{[
iΩ(n)(1 + Δ)+

γ−
2

]
eiΔΩ(n)t

+
[
−iΩ(n)(1−Δ)− γ−

2

]
e−iΔΩ(n)t

}
(12.73)

where

γ± =
1
2
(γ1± γ2) , (12.74)

Δ =
(

1− γ2−
4Ω(n)2

)1/2

, (12.75)

Ω(n) = g
√

n + 1 . (12.76)
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We now assume γ1, 2t � 1. The first term in (12.63) may be ignored as it simply
decays to zero.

We are interested in the state of the field alone which is obtained by tracing out
over the atomic states. We use

TrA(J S (t)|n, 2〉〈m, 2|) =
γ2

2
|n〉〈m|[c+

n (t)+ c−n (t)][c+
m(t)∗+ c−m(t)∗]

+
γ1

2
|n + 1〉〈m+ 1|[c+

n (t)− c−n (t)]

× [c+
m(t)∗ − c−m(t)∗] . (12.77)

Thus we obtain in the steady state, the single atom increment

ρ ′ =
∞

∑
n, m=0

ρnm(0)(Anm|n〉〈m|+ Bnm|n + 1〉〈m+ 1|) , (12.78)

where

Anm =
γ2

2

∞∫
0

dt[c+
n (t)+ c−n (t)][c+

m(t)∗+ c−m(t)∗] , (12.79)

Bnm =
γ1

2

∞∫
0

dt[c+
n (t)− c−n (t)][c+

m(t)∗ − c−m(t)∗] . (12.80)

Note that Tr(ρ) = 1 requires that Ann + Bnn = 1. We quote only the results for the
diagonal matrix elements,

Ann =
(

γ2

2γ+

)
4Ω(n)2 + 2γ1γ+

4Ω(n)2 + γ1γ2
(12.81)

and

Bnn = 1−Ann =
(

γ2

2γ+

)
4Ω(n)2

4Ω(n)2 + γ1γ2
. (12.82)

To compute the change in the state we write

ρ ′ = (1 +U )ρ = Pρ . (12.83)

The diagonal matrix elements of U ρ are then found to be

〈n|U ρ |n〉=−an+1 pn + anpn+1 , (12.84)

where
an+1 = Ann−1 . (12.85)
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Exercises

12.1 Show that below threshold (G < κ) the master equation may be approxi-
mated by

dρ
dt

=
G
2

(2a†ρa−aa†ρ−ρaa†)+ κ(2aρa†−a†aρ−ρa†a) .

Thus demonstrate that the steady state density operator is

ρ ss =
(

1− G
κ

) ∞

∑
n=0

(
G
κ

)n

|n〉〈n| (12.86)

which is equivalent to a chaotic state.
12.2 Show that well above threshold the laser master equation may be approxi-

mated by

dρ
dt

=
Gns

2
(2n−1/2a†ρan−1/2−an−1a†ρ−ρan−1a†)

+
κ
2

(2aρa†−a†ρa−ρa†a)

where n = a†a. Show that the steady-state solution is

ρ ss = exp

(
−Gns

κ

) ∞

∑
n=0

(Gns/κ)n

n!
|n〉〈n| . (12.87)

12.3 Show that the contours of the Q-function for the laser steady states in Exer-
cises 12.1, 12.2 are: (a) Circles centred on the origin for below threshold, (b)
annulli centered at the radius r = (Gns/κ)1/2, for the above threshold state.
Thus in both cases the phase of the field is random.
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Chapter 13
Bells Inequalities in Quantum Optics

Abstract The early days of quantum mechanics were characterised by debates over
the applicability of established classical concepts, such as position and momentum,
to the new formulation of mechanics. The issues became quite distinct in the pro-
tracted exchange between A. Einstein and N. Bohr, culminating in the paper of
Einstein, Podolsky and Rosen (EPR) in 1935 [1]. Bohr, in his response to this pa-
per, [2] expanded upon his concept of complementarity and showed that the EPR
argument did not establish the incompleteness of quantum mechanics, as EPR had
claimed, but rather highlighted the inapplicability of classical modes of description
in the quantum domain. A. Einstein, however, did not accept this position and the
two sides of the debate remained unreconciled, while most physicists generally be-
lieved that N. Bohr’s argument carried the day.

Thus the matter rested until 1964 when J.S. Bell opened up the possibility of
directly testing the consequences of the EPR premises. We will discuss the EPR
argument and the analysis of Bell in the context of correlated photon states.

13.1 The Einstein–Podolsky–Rosen (EPR) Argument

The essential step in the EPR argument is to introduce correlated pure states of two
particles (or photons) of the form

|Ψ〉= ∑
n
|an〉1⊗|bn〉2 , (13.1)

where {|an〉1} and {|bn〉2} are ortho-normal eigenstates for some operators Â1 and
B̂2 of particles 1 and 2, respectively. The correlations between the particles persist
even if in the course of the experiment the particles become spatially separated after
the interaction responsible for the correlated state.

Now suppose one were to measure the operator Â1 on particle one long after the
interaction between the particles has ended, and the two particles are far apart. If the
result is some eigenvalue an, particle 1 must thence-forth be considered to be in the

247
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state |an〉1, while particle 2 must be in the state |bn〉2. As the state of particle 2 is now
an eigenstate of B̂2 we can predict with probability one that the physical quantity
represented by B̂2 if measured will give the result bn. Thus we can predict the value
of this physical quantity for particle 2 without in any way interacting with it.

Suppose, however, that instead of measuring Â1 on particle 1 we measured some
other quantity, Ĉ1, with eigenstates |cn〉1. We then rewrite the state in (13.1) as

|Ψ〉= ∑
n
|cn〉1⊗|dn〉2 , (13.2)

where |dn〉2 is an eigenstate of some other operator D̂2 for particle 2. If the result cn

is obtained for the measurement on particle 1, particle 2 must be in the state |dn〉2
for which a measurement of D̂2 must give the result dn. Thus depending on what
we choose to measure on particle 1 the state of particle 2 after the measurement,
can be an eigenstate of two quite different operators. This is another example of the
measurement ambiguity discussed in the previous chapter. However, the EPR argu-
ment now raises one very important question. Is it possible that the two operators
on particle 2, B̂2 and D̂2, do not commute? If this were the case the EPR argument
establishes that, depending on what is measured on particle 1, we can predict with
certainty the values of physical quantities, represented by noncommuting operators
without in anyway interacting with this particle. By explicit construction Einstein,
Podolsky and Rosen showed that this is indeed possible.

EPR claimed that “if without in anyway disturbing a system, we can predict with
certainty (i.e., with probability equal to unity), the value of a physical quantity, then
there exists an element of physical reality corresponding to that quantity”.

Assuming that the wave function does contain a complete description of the two-
particle system it would seem that the argument of EPR establishes that it is possible
to assign two different states (|bn〉2 and |dn〉2) to the same reality. However, in the
language of EPR, two physical quantities represented by operators which do not
commute cannot have simultaneous reality. The conclusion of EPR was that the
quantum mechanical description of physical reality given by the wave function is
not complete.

13.2 Bell Inequalities and the Aspect Experiment

Were one to adopt the conclusion of EPR it would seem necessary to search for a
more complete physical theory than quantum mechanics. To obtain such a theory,
quantum mechanics should be supplemented by additional, perhaps inaccessible,
variables. As Bell [3] showed, attempting to complete the theory in this way and
maintain the locality condition (that measurements on particle 1 carried out when
the particles are spatially separated should have no effect on particle 2) leads to
statistical predictions which differ from those of standard quantum theory.

To elucidate Bell’s argument we consider a system in which correlated photon
polarisation states are produced. Such a system is the (J = 0)→ (J = 1)→ (J = 0)
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Fig. 13.1 Schematic representation of the experiment of Aspect et al. [4] to test quantum mechanics
against the Bell inequality. S is a source of two polarised photons. 1 and 2 label polarisation
analysers, with orthogonal output channels labelled + and −. The polarisation analysers are set at
angles θ1, θ2

cascade two-photon transition in calcium-40 (Fig. 13.1). The two photons are emit-
ted in opposite directions (by conservation of momentum) with correlated polari-
sation states. Each photon passes through separate polarisation analysers, emerging
in either the horizontal (+) channel, or the vertical channel (−) of each analyser.
Initially let us assume that the horizontal polarisation is chosen to be orthogonal to
the plane of the experiment and that both analysers are so aligned. However, we are
free to rotate the polarisers in the plane orthogonal to the propagation direction of
the photons. We follow the treatment of Reid and Walls [5].

Let a±(b±) be the annihilation operator for the horizontally (+) or vertically
(−) polarised mode for the field travelling to analyser 1 (labelled 1) or analyser 2
(labelled 2). The state of the two photons may be written as

|Ψ〉= 1√
2
(a†

+b†
+ + a†

−b†
−)|0〉 , (13.3)

where |0〉 is the vacuum state. Using the notation |n1, n2, n3, n4〉 to denote n1

photons in mode a+, n2 photons in mode a−, n3 photons in mode b+ and n4 photons
in mode b−, the state may be expressed as

|ψ〉= 1√
2
(|1,0,1,0〉+ |0,1,0,1〉) . (13.4)

If the photon in analyser 1 is detected in the (+) channel, the state of the photon
directed towards 2 must be polarised in the horizontal direction. This correlation is
thus precisely of the kind required for the EPR experiment.

We are free to measure the polarisation in any direction by rotating the analysers
through the angles θ1 and θ2 for detector 1 and 2, respectively. The detected modes
in this case are orthogonal transformations of the modes a± and b±;

c+ = a+ cosθ1 + a− sinθ1 , (13.5a)

c− =−a+ sinθ1 + a− cosθ1 , (13.5b)

d+ = b+ cosθ2 + b− sinθ2 , (13.5c)

d− =−b+ sinθ2 + b− sinθ2 . (13.5d)
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The detectors placed after the polarisers measure the intensities 〈I±1 〉 and 〈I±2 〉,
while the correlators measure 〈I+

1 I+
2 〉, etc. In fact, for the two-photon state 〈I±i 〉 =

P±i , is the probability for one count in the + or − channel of detector i. Of course,
these moments depend on θ1 and θ2. Let us further suppose that in a complete theory
these functions also depend on the variable λ which remains hidden from direct
determination and for which only a statistical description is available. This variable
is distributed according to some density ρ(λ ). In general, we may then write

〈I±1 I±2 〉θ1θ2 =
∫

ρ(λ )I±1 (λ ,θ1,θ2)I±2 (λ ,θ1,θ2)dλ , (13.6)

where I+
1 denotes the expected intensity at detector 1 given a value for λ , namely

I+
1 (λ ,θ1,θ2) =

∫
I+
1 ρ(I+

1 |λ ,θ1,θ2)dI+
1 . (13.7)

It is reasonable to assume, as in EPR, that for a given value of λ the results at 1
cannot depend on the angle θ2 chosen at 2, (and conversely). This is the “locality
assumption”, it is formally represented by

I±1 (λ ,θ1,θ2) = I±1 (λ ,θ1) , (13.8a)

I±2 (λ ,θ1,θ2) = I±2 (λ ,θ2) . (13.8b)

Consider the following correlation functions:

E(θ1,θ2) =
〈(I+

1 − I−1 )(I+
2 − I−2 )〉

〈(I+
1 + I−1 )(I+

2 + I−2 )〉 . (13.9)

In terms of the detected mode operators this may be written in the form

E(θ1,θ2) =
〈: (c†

+c+− c†
−c−)(d†

+d+−d†
−d−) :〉

〈: (c†
+c+ + c†

−c−)(d†
+d+ + d†

−d−) :〉 (13.10)

where : : denotes normal ordering.
Assuming a local hidden variable theory we may write

E(θ1,θ2) = N−1
∫

f (λ )S1(λ ,θ1)S2(λ ,θ2)dλ , (13.11)

where

S1(λ ,θ1) =
I+
1 (λ ,θ1)− I−1 (λ ,θ1)

I1(λ )
, (13.12)

S2(λ ,θ1) =
I+
2 (λ ,θ2)− I−2 (λ ,θ2)

I2(λ )
, (13.13)
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f (λ ) = ρ(λ )I1(λ )I2(λ ) (13.14)

with

I1(λ ) = I+
1 (λ ,θ1)+ I−1 (λ ,θ2) , (13.15a)

I2(λ ) = I+
2 (λ ,θ2)+ I−2 (λ ,θ2) . (13.15b)

The latter equations correspond to the intensity of light measured at 1 or 2 with the
polarisers removed. The normalisation N is

N =
∫

f (λ )dλ . (13.16)

The functions |S1(λ ,θ1)| and |S2(λ ,θ2)| are bounded by unity:

|S1(λ ,θ1)| ≤ 1 , (13.17a)

|S2(λ ,θ2)| ≤ 1 . (13.17b)

To obtain a testable statistical quantity we need to consider how E(θ1,θ2)
changes as the orientation of the polarisers are changed. With this in mind, con-
sider E(θ1,θ2)−E(θ1,θ ′2). This quantity may be expressed as

E(θ1,θ2)−E(θ1,θ ′2) = N−1
∫

dλ f (λ )S1(λ ,θ1)S2(λ ,θ2)[1±S1(λ ,θ ′1)S2(λ ,θ ′2)]

−N−1
∫

dλ f (λ )S1(λ ,θ1)S2(λ ,θ ′2)

× [1±S1(λ ,θ ′1)S2(λ ,θ2)] . (13.18)

Then using (13.17a and b)

|E(θ1,θ2)−E(θ1,θ ′2)| ≤ N−1
∫

dλ f (λ )[1±S1(λ ,θ ′1)S2(λ ,θ ′2)]

+ N−1
∫

dλ f (λ )[1±S1(λ ,θ ′1)S2(λ ,θ2)]

= 2± [E(θ ′1,θ
′
2)+ E(θ ′1,θ2)].

Finally, we obtain the Bell inequality

|B| ≤ 2 , (13.19)

where
B = E(θ1,θ2)−E(θ1,θ ′2)+ E(θ ′1,θ

′
2)+ E(θ ′1,θ2) .

This particular Bell inequality is known as the Clauser–Horne–Shimony–Holt
(CHSH) inequality.

As we shall see, there are states of the field which violate the inequality equa-
tion (13.19) [for example, the state given in (5)]. We note firstly, however, that if the
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state of the field can be represented by a positive, normalisable Glauber–Sudarshan
P-representation no violation of this inequality is possible. Let α = (α+,α−,β+,β−)
be the c-number corresponding to the modes a±,b±. If we define the following
‘transformation’ variables for the modes c±,d±,

γ+ = α+ cosθ1 + α− sinθ1, δ+ = β+ cosθ2 + β− sinθ2,

γ− =−α+ sinθ1 + α− cosθ1, δ− =−β+ sinθ2 + β− cosθ2 , (13.20)

the correlation function E(θ1,θ2) becomes

E(θ1,θ2) = N−1
∫

P(α)(|γ+|2−|γ−|2)(|δ+|2−|δ−|2)d2α (13.21)

with
N =

∫
P(α)(|γ+|2 + |γ−|2)(|δ+|2 + |δ−|2)d2α .

Recalling that the transformations in (13.20) are orthogonal we note that

|γ+|2 + |γ−|2 = |α+|2 + |α−|2 and |δ+|2 + |δ−|2 = |β+|2 + |β−|2

the normalisation may be written

N =
∫

P(α)(|α+|2 + |α−|2)(|β+|2 + |β−|2)d2α , (13.22)

where the integrand does not depend on θ1 or θ2. Then

E(θ1,θ2) = N−1
∫

P(α)(|α+|2 + |α−|2)(|β+|2 + |β−|2)S(γ)S(δ ) , (13.23)

where

S(γ) =
|γ+|2−|γ−|2
|α+|2 + |α−|2 (13.24)

and

S(δ ) =
|δ+|2−|δ−|2
|β+|2 + |β−|2 . (13.25)

As S(γ) is a function of θ1 and not θ2 while S(δ ) is a function of θ2 and not θ1,
the Glauber–Sudarshan representation is local. It then follows immediately that pro-
vided P(α) is positive and normalisable, the Bell inequality in (13.19) must hold.

The correlation function E(θ1,θ2) may be evaluated directly for the state in
(13.4) using the normally-ordered moment in (13.9). One finds

E(θ1,θ2) = cos2ψ , (13.26)
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where
ψ ≡ θ1−θ2 .

If we choose

ψ = θ2−θ1 = θ ′1−θ2 = θ ′1−θ ′2 =
1
3
(θ1−θ ′2) ,

one finds
B = 3cos2ψ− cos6ψ . (13.27)

When ψ = 22.5◦, B = 2
√

2 showing a clear violation of the Bell inequality |B| ≤ 2.
This violation has convincingly been demonstrated in the experiment of

Aspect [4]. In this experiment the polarisation analysers were essentially beam split-
ters with polarisation-dependent transmittivity. Ideally, one would like to have the
transmittivity (T +) for the modes a+ and b+ equal to one, and the reflectivity (R−)
for the modes a− and b− also equal to one. However, in the experiment the mea-
sured values were T +

1 = R−1 = 0.950, T−1 = R+
1 = 0.007 and T +

2 = T−2 = 0.930,
T−2 = R+

2 = 0.007.
The expression for E(θ1,θ2) is then modified:

E(θ1,θ2) = F
(T+

1 −T−1 )(T +
2 −T−2 )

(T+
1 + T−1 )(T +

2 + T−2 )
cos2ψ , (13.28)

where F is a geometrical factor accounting for finite solid angles of detection. In this
experiment F = 0.984, and quantum mechanics would give for ψ = 22.5◦, B = 2.7.

The observed value was 2.697± 0.015, in quite good agreement with quantum
theory and a clear violation of the Bell inequality. In Fig. 13.2 is shown a plot of
the theoretical and experimental results as a function of ψ . The agreement with
quantum mechanics is better than 1%. It would appear in the light of this experiment
that realistic local theories for completing quantum mechanics are untenable.

Fig. 13.2 Correlation of
polarisations as a function
of the relative angle of the
polarisation analysers. The
indicated errors are ±2 stan-
dard deviations. The dot-
ted curve is the quantum-
mechanical prediction for the
experiment. For ideal polaris-
ers the curves woudl reach
the values ±1. (From Aspect
et al. Phys. Rev. Letts. 49,
92 (1982))
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13.3 Violations of Bell’s Inequalities Using a Parametric
Amplifier Source

The Bell inequality presented in (13.19) is only one of a large class of inequalities
violated by quantum mechanics. Another inequality has recently been tested by Ou
and Mandel [6] based on an experiment first suggested by Reid and Walls [5]. It
has now been realised in a number of configurations [7, 8]. We shall discuss the Ou
and Mandel experiment presented schematically in Fig. 13.3. A parametric down
converter produces two beams of linearly polarized signal and idler photons. Phase
matching conditions give a relative angle of 4◦ between the propagation direction of
the two beams. The idler photons pass through a 90◦ polarization rotator. The signal
and idler beams are then incident from opposite sides onto a beam splitter. After the
beam splitter, the two beams now consisting of mixed signal and idler photons pass
through linear polarizers set at adjustable angles θ1 and θ2 before falling on two
photodetectors. The coincidence counting rate of the two detectors is then measured
with a time-to-digital converter. This provides a measure of the joint probability of
detecting two photons for various settings θ1 and θ2 of the two polarizers.

In this experiment the polarisation analysers used have only a single output chan-
nel. However, we can still derive a Bell inequality violated by quantum mechanics.
If we define the correlation function P(θ1,θ2) by

P(θ1,θ2) = 〈I1I2〉θ1θ2 (13.29)

the following Bell inequality may be derived as

Fig. 13.3 Schematic representation of the experiment of Ou and Mandel to test the CHSH inequal-
ity using parametric down conversion [9]
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S = P(θ1,θ2)−P(θ1,θ ′2)+ P(θ ′1,θ
′
2)+ P(θ ′1,θ2)

−P(θ1,−)−P(−,θ2)≤ 0 , (13.30)

where

P(θ1,−) = 〈I1I2〉θ1 , (13.31)

P(−,θ2) = 〈I1I2〉θ2 (13.32)

are the intensity correlation functions with one or the other polariser removed. The
inequality in (13.30) is known as the Clauser–Horne inequality. Just as in the case of
the CHSH inequality (13.19) this inequality is satisfied for states of the field which
can be represented by a positive, normalisable Glauber–Sudarshan P-representation
[5]. It may, however, be violated for certain quantum fields.

We follow closely the treatment given by Tan and Walls [9]. We now proceed
to calculate P(θ1,θ2) and S for the experiment of Ou and Mandel [6]. We include
the possibility of placing an attenuator in the idler beam. Let a+ and a− denote the
annihilation operators for the x and y polarized modes in the idler beam, and let b+
and b− denote the operators for the corresponding modes in the signal beam. The
outgoing modes from the beam splitter are described by the operators c± and d±,
and obey the following relationships:

c+ =
√

T+b+ + i
√

R+a+,

c− =
√

T−b−− i
√

R−a−,

d+ =
√

T+a+ + i
√

R+b+,

d− =
√

T−a−− i
√

R−b− , (13.33)

where T± and R± are the intensity transmission and reflection coefficients for the x
and y polarizations. The phase relationships arise from the Fresnel formula. Since
the signal beam is polarized in the x direction, and the idler beam is polarized in the
y direction, the modes associated with the operators a+ and b+ are the annihilation
operators for the output modes of the parametric down converter. When an atten-
uator with the intensity transmission coefficient η is placed in the idler beam, the
operators a− in the above equations is replaced by

√
ηa−+

√
1−ηυ , (13.34)

where the vacuum mode operator υ is included to give the correct level of fluctua-

tions in the attenuated beam. Photodetectors 1 and 2 respond to the fields E(+)
1 and

E(+)
2 , respectively, where
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E(+)
1 = c+ cosθ1 + c− sin θ1,

E(+)
2 = d+ cosθ2 + d− sinθ2 , (13.35)

The joint two-photon detection probability (for perfect detector efficiency) is

P(θ1,θ2) = 〈ψ |E(−)
1 E(−)

2 E(+)
2 E(+)

1 |ψ〉 . (13.36)

For low conversion efficiencies the output of the parametric down converter is a pair
of photons, one in each of the signal and idler modes a− and b+. Thus |ψ〉= |1,1〉,
this yields

P(θ1,θ2) = η(
√

R+R− sinθ1 cosθ2 +
√

T+T− cosθ1 sinθ2)2 . (13.37)

Taking a 50/50 beam splitter (R+ = R− = T+ = T− = 1
2 ),

P(θ1,θ2) =
1
4

η sin2(θ1 + θ2) . (13.38)

Removing one polarizer, we must calculate

P(−,θ2) = 〈ψ | : (c†
+c+ + c†

−c−)E(−)
2 E(+)

2 : |ψ〉 , (13.39)

where : : represents normal ordering. For the input state |1,1〉 we find

P(−,θ2) =
1
4

η , (13.40)

and similarly

P(θ1,−) =
1
4

η , (13.41)

for a 50/50 beam splitter.
Substituting (13.38, 13.40 and 13.41) into the Clauser–Horne–Bell inequality

(13.2) gives

S =
1
4

η [sin2(θ1 + θ2)− sin2(θ1 + θ ′2)+ sin2(θ ′1 + θ ′2)+ sin2(θ ′1 + θ2)−2] .

Choosing the angles such that θ1 = π/8,θ2 = π/4,θ ′1 = 3π/8 and θ ′2 = 0,

S =
1
4

η(
√

2−1) > 0 , (13.42)

which violates the inequality.
In a classical wave analysis of the parametric down converter, we represent the

signal and idler fields incident on the beam splitter by the complex numbers Es

and Ei. The beam splitter combines these fields to produce E1 and E2 at the detec-
tors, where
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E1 = cosθ1
√

T+Es− i sinθ1
√

R−Ei,

E2 = icosθ2

√
R+Es + sinθ2

√
T−Ei . (13.43)

The joint detection probability P(θ1, θ2) is proportional to the intensity correlation
〈|E1|2E2|2〉. Using the above forms for E1 and E2, and assuming that the difference
in the phases of the signal and idler fields is random, we find that for a 50/50 beam
splitter

P(θ1,θ2) ∝〈IsIi〉sin2(θ1 + θ2)

+ 〈I2
s 〉cos2 θ1 cos2 θ2 + 〈I2

i 〉sin2 θ1 sin2 θ2 . (13.44)

where we have written Is for |Es|2 and for Ii for |Ei|2. With the attenuator in the
idler beam, Ii = ηIs, and if we assume that the intensity fluctuations are such that
〈I2〉 ∝ 〈I〉2 and 〈IiIs〉 ∝ 〈Ii〉〈Is〉, then

P(θ1,θ2) ∝ η sin2(θ1 + θ2)+ cos2 θ1 cos2 θ2 + η2 sin2 θ1 sin2 θ2 . (13.45)

In order to compare the quantum and classical result we consider P(θ , π/4) with
R+ = R− = T+ = T− = 1

2 . Then

P(θ ,π/4) =
η
8

(1 + sin2θ ) , (13.46)

which exhibits a sinusoidal modulation with respect to the angle 2θ . The visibility
of the resulting modulation is unity. However, the classical result gives

P(θ ,π/4) ∝
η
2

(1 + sin2θ )+
1
2

cos2 θ +
η2

2
sin2 θ , (13.47)

which in the absence of the absorber (η = 1) gives

P(θ ,π/4) ∝ (1 +
1
2

sin2θ ) . (13.48)

In the classical case the modulation is not 100%, in fact the visibility is only one half.
In the experiment of Ou and Mandel the value of S was found to be positive

with an accuracy of six standard deviations, in clear violation of the Bell inequality
(13.30). The experiment also distinguished between the different quantum and clas-
sical predictions for the phase dependence of P(θ ,π/4). These results are shown in
Fig. 13.4. The solid and dashed-dotted lines correspond to the quantum and classi-
cal wave predictions, respectively, with constants of proportionality adjusted to fit.
Clearly, P(θ ,π/4) does exhibit the phase dependence predicted by quantum me-
chanics. The observed visibility obtained from a best fit was 0.76; greater than the
classical prediction of 0.5.

Instead of the correlated two-photon state discussed above we can also use the
output state of a parametric down converter. We assume that the pump field in this
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Fig. 13.4 The coincidence
counting rate as a function
of polariser angle θ1 with θ2
fixed at 45◦. The solid curve
is the quantum prediction
based on (13.46), and the
dash-dot curve is the classical
prediction based on (13.48).
The dashed and dotted curves
are the quantum and classical
predictions, respectively, in-
cluding a detector inefficiency
of 0.76

device may be treated classically. The solutions for the output modes of the de-
vice are

a− = a0 coshκ + b†
0 sinhκ , (13.49)

b+ = b0 coshκ + a†
0 sinhκ , (13.50)

where κ is proportional to the second-order nonlinear susceptibility of the crystal,
and a0,b0 are the input modes. We assume that the input state is a vacuum. With a
50:50 beam splitter η = 1 and with θ ′2 = 0,θ1 = ψ ,θ2 = 2ψ ,θ ′1 = 3ψ the quantity
S which occurs in the Bell inequality (13.30) is given by (Exercise 13.2)

S =
1
4

sinh2 κ{F(ψ)+ 2sinh2 κ [F(ψ)+ 2G(ψ)]} , (13.51)

where

F(ψ) = 2sin2 3ψ− sin2 ψ + sin2 5ψ−2,

G(ψ) = sin2 ψ sin2 2ψ + sin2 3ψ sin2 2ψ− sin2 3ψ− sin2 2ψ .

When κ � 1 this may be approximated by

S ≈ 1
4

κ2F(ψ) . (13.52)

For purposes of comparison the two-photon state, with the same choice of angles
would give

S =
1
4

F(ψ) . (13.53)

Up to a scale constant in this limit the parametric down converter gives the same
result as for a correlated photon pair.
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Fig. 13.5 The correlation
function in (13.51) normalised
by sinh2 κ , versus ψ for vari-
ous values of κ . The violation
of the classical inequality is
evident for small κ

In the limit κ � 1 we find

S ∝ F(ψ)−2G(ψ) . (13.54)

As the function on the right-hand side is always nonpositive no violation of the
Clauser–Horne inequality is possible. In Fig. 13.5 we plot S normalised by the in-
tensity I = sinh2 k versus ψ for various values of κ . We see that the maximum
violation for κ � 1 occurs when θ = π/8 (solid curve).

We note that the form of the intensity correlation function for the parametric
down-converter in the limit of κ � 1 coincides with that of the classical analy-
sis (13.44).

13.4 One-Photon Interference

In all the schemes discussed above the states which lead to a violation of the Bell
inequalities are correlated two-photon states. We now consider a scheme which
demonstrates the non-local nature of quantum mechanics, which does not rely on
two-photon states. This experiment illustrates on the nonlocal behaviour of a single
photon.

The scheme is illustrated in Fig. 13.6. A field is split at a 50:50 beam splitter,
and each of the two output fields directed to homodyne detectors. Each of the ho-
modyne detectors mix the output field from the first beam splitter with a coherent
local oscillator of amplitude αk = αeiθκ , and the final intensities at the two output
channels of each of the homodyne detectors are measured using photodetectors. We
follow closely the treatment of Tan et al. [10].

Referring to Fig. 13.6 we see that the homodyne detector k may be regarded as
making a measurement of bk with a local parameter θk. This parameter is analogous
to the angle of the polarisation analysers in the two-photon schemes. We wish to
determine the probabilities with which the individual photodetectors respond, and
the coincidence probabilities for pairs of photodetectors, one in each homodyne
detector.
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Fig. 13.6 Schematic repre-
sentation of an experiment
with a single photon state to
demonstrate non-locality [10]

The transformation between the mode operators shown in Fig. 13.6 are given by
(

ck

dk

)
=

1√
2

(
1 i
i 1

)(
ak

bk

)
,

(
b1

b2

)
=

1√
2

(
1 i
i 1

)(
v
u

)
. (13.55)

Thus the modes input into the detectors may be expressed in terms of the input mode
operators by

⎛
⎜⎜⎝

c1

d1

c2

d2

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

1√
2

i
2 0 − 1

2
i√
2

1
2 0 i

2

0 − 1
2

1√
2

i
2

0 i
2

i√
2

1
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

a1

v
a2

u

⎞
⎟⎟⎠ . (13.56)

This enables us to calculate the coincidence probabilities between the detectors di-
rectly in terms of the input field.

We begin by considering vacuum inputs to the modes u and v. The local oscil-
lators are assumed to be in coherent states |αeiθ1〉, |αeiθ2〉. The intensities at all
detectors are found to be equal

〈Ic1〉= 〈Ic2〉= 〈Id1〉= 〈Id2〉=
1
2

α2 . (13.57)

The two-photon coincidence rates due to rare chance coincidences between the local
oscillators are also equal between the pairs of detectors

〈Ic1Ic2〉= 〈Id1Id2〉= 〈Ic1Id2〉= 〈Id1Ic2〉=
1
4

α4 . (13.58)
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We now consider the input of a single photon in mode u while the mode ν is the
vacuum. The state of the two-mode field (b1 and b2) after the first beam-splitter is
then an entangled state of a one-photon state and the vacuum

|ψ〉= 1√
2
(i|1〉|0〉+ |0〉|1〉) (13.59)

which is precisely the same state as one gets (except for a phase factor) for a one-
photon state incident on the two slits in Young’s interference experiment.

The photon count probabilities at the individual detectors are now

〈Ic1〉= 〈Ic2〉= 〈Id1〉= 〈Id2〉=
1
2

α2 +
1
4

. (13.60)

Thus the intensities at each detector are increased by 1
4 , being the probability that the

one-photon input is detected by any given detector. The coincidence count probabil-
ities between the pairs of detectors differ, now depending on which is considered.
We find

〈Ic1Ic2〉= 〈Id1Id2〉=
1
4
{α4 + α2[1 + sin(θ1−θ2)]} (13.61)

and

〈Ic1Id2〉= 〈Id1Ic2〉=
1
4
{α4 + α2[1− sin(θ1−θ2)]} . (13.62)

The coincidence probabilities depend on the phase difference between the local os-
cillators θ1− θ2. If this is set to −π/2, we get the minimum possible coincidence
probability of 1

4 α4 between detector pairs (c1, c2) and (d1, d2) and the maximum
coincidence probability of 1

4 α4 + 1
2 α2 between the pairs (c1, d2) and (d1, d2). We

shall be most interested in the situation where α is small compared to one.
Let us first try to interpret these results from a naı̈ve particle viewpoint. The great

enhancement of the single count probability over that with vacuum inputs is easily
understood by the above argument. On the other hand, a coincidence between two
detectors is expected to be a rare event since there is only one incident photon, and a
coincidence can only occur if an additional photon is generated by the (weak) local
oscillator of the homodyne detector which the photon does not reach. Since these
two photons are detected at two spatially separated detectors and have apparently
arisen from independent sources, we would not expect any correlation between the
paths of these photons within each homodyne detector. Nevertheless, the quantum
mechanical analysis reveals that such a correlation is present. In fact, this correla-
tion is so great that for the choice of phases given above, no additional coincidence
(above the vacuum level) occur for particular detector pairs, whereas there is a rel-
atively large coincidence probability (proportional to the local oscillator intensity)
for the other pairs.

Non-local intensity correlation and their dependence on the local oscillator
phases are not unexpected from a classical wave description of light. A classical
analogue to the single photon input is a wave of low amplitude and unspecified
phase. We may formally obtain the results for the classical wave theory from the



262 13 Bells Inequalities in Quantum Optics

quantum-mechanical calculation by substituting the wave amplitude β e±iφ for b
and b†, respectively, and averaging over the random phase φ . It is easy to check that
the predicted average intensities and intensity correlations are given by

〈Ic1〉= 〈Ic2〉= 〈Id1〉= 〈Id2〉=
1
2

α2 +
1
4

β 2 , (13.63)

〈Ic1Ic2〉= 〈Id1Id2〉=
1
4
{α4 + α2β 2[1 + sin(θ1−θ2)]+

1
4

β 4} , (13.64)

〈Ic1Id2〉= 〈Id1Ic2〉=
1
4
{α4 + α2β 2[1− sin(θ1−θ2)]+

1
4

β 4} . (13.65)

If we consider the coincidence probabilities as a function of (θ1− θ2), we see that
they can vary between 1

4(α4 + 1
4 β 4) to 1

4 (α4 + 2α2β 2 + 1
4 β 4). This corresponds to

a “visibility” of

ν =
ρ

ρ2 + ρ + 1
4

(13.66)

where ρ = (α/β )2. The visibility attains a maximum value of 1
2 when ρ = 1

2 . By
contrast, the visibility as calculated from the quantum-mechanical result is

ν =
1

α2 + 1
. (13.67)

This can be made arbitrarily close to unity by choosing a sufficiently small value of
α . Figure 13.7 shows the coincidence probabilities 〈Ic1Ic2〉= 〈Id1Id2〉 as a function of
the local oscillator phase difference for the quantum mechanical and classical results
with β = 1 and α = 1/

√
2. This gives the same single count probability of 1

2 in each
detector, and the local oscillator amplitudes are optimized for maximum visibility

Fig. 13.7 Coincidence probability for the single photon non-locality experiment. The solid line is
the quantum mechanical model, the dashed line is the prediction for a classical wave model [10]
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Fig. 13.8 Variation of visibility with the amplitude of the local oscillator for the quantum model
(solid line) and a classical wave model (dashed line) [10]

in the classical result. However, the quantum mechanical visibility is considerably
larger than that expected classically. This is clearly seen in Fig. 13.8 where the
visibility ν is plotted as a function of the coherent local oscillator amplitude α for
the quantum mechanical single state and the classical wave mode with β = 1.

We thus see that by measuring the coincidence probability in a pair of detectors,
it is possible to distinguish between the classical and quantum mechanical models.
If the detector efficiencies are less than unity, coincidences will be missed, but this
does not affect the measurement of the visibility of the effect.

Preparation of a single photon state may be achieved experimentally by using the
signal beam of a parametric amplifier while monitoring photons in the idler beam
[11]. Hong and Mandel [12] described an experiment in which a nearly pure single
photon state was produced using this method. If the pump for the parametric ampli-
fier is derived by frequency doubling a coherent beam, this provides a convenient
source for the local oscillator required in the experiment under discussion.

In order to rigorously rule out classical explanations for the quantum mechanical
result, it is necessary to show that Bell’s inequality may be violated.

An intensity correlation coefficient is used which involves all four photo-detectors

E(θ1−θ2) =
〈(Id1− Ic1)(Id2− Ic2)〉
〈(Id1 + Ic1)(Id2 + Ic2)〉

. (13.68)

Evaluating this in terms of the statistics of the input mode u, where ν is the vacuum
yields

E(θ1−θ2) =−α2{〈u†u〉sin(θ2−θ1)+ |〈u2〉|sin(θ2 + θ1− ξ )}
α4 + 〈u†u〉α2 + 1

4 〈u†2u2〉 (13.69)
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where 〈u2〉 = Rexp(iξ ). When a single photon input is considered for u, this re-
duces to

E(θ1,θ2) =
1

α2 + 1
sin(θ1−θ2) . (13.70)

If th coefficient of sin(θ1−θ2) is greater than 1/
√

2 it is well-known that this func-
tional form for the correlation allows a violation of Bell’s inequalities. This is clearly
possible if α is made sufficiently small. It has been shown [13] that such a violation
of Bell’s inequalities is not possible if u is in a coherent state, no matter how small
the input amplitude may be.

In conclusion, some of the most striking features of non-locality in quantum
mechanics may be demonstrated using phase-sensitive measurements on the field
produced by a single photon. These effects may not be explained classically using a
particle, wave or hidden-variable theory involving local causality.

Exercises

13.1 Derive (13.26) for the correlation function E(θ1, θ2). Show that with the
choice ψ = θ2−θ1 = θ ′1−θ2 = θ ′1−θ ′2 = 1

3(θ1−θ ′2) one obtains (13.27) for
B.

13.2 Derive (13.51) for the Bell parameter S for the parametric amplifier .
13.3 The state going from the beam splitter in the one-photon interference experi-

ment is the linear superposition state

|ψ〉= 1√
2
(i|1〉|0〉+ |0〉|1〉) .

Compute the intensity correlations were this state replaced by the mixed state

ρ =
1
2
(|1〉u〈1|⊗ |0〉v〈0|+ |0〉u〈0|⊗ |1〉v〈1|)

and show that no violation of the Bell inequality can occur.
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Chapter 14
Quantum Nondemolition Measurements

Abstract Current attempts to detect gravitational radiation have to take into ac-
count the quantum uncertainties in the measurement process. Considering that the
detectors are macroscopic objects in some cases as large as a 10-ton bar, the fact
that quantum fluctuations in the detector must be taken into account seems sur-
prising. However, as discussed in Chap. 8, gravitational waves interact so weakly
with terrestrial detectors that a displacement of the order of 10−19 cm is expected.
To illustrate how the measurement process may introduce uncertainties which ob-
scure the signal we consider the simple example of a free mass. A measurement
of the position of a free mass with a precision Δxi ≈ 10−19 cm will disturb the
momentum by an amount given by the uncertainty principles as Δp ≥ �(2Δxi)−1.
The period of the gravitational waves is expected to be about 10−3 s, hence a sec-
ond measurement of the position should be made after this time. During this pe-
riod, however, the position uncertainty will grow under free evolution by an amount
Δx2(τ) = Δx2(0)+ [Δp2(0)τ2/m2]. The following inequality then holds

Δx2(τ)≥ 2Δx(0)Δp(0)
τ
m

. (14.1)

Using the uncertainty principle we then find Δx2(τ) ≥ �τ/m. Taking the detector
mass equal to 10 tons, we find Δx ≥ 5× 10−19 cm. That is, the uncertainty intro-
duced by the first measurement has made it impossible for a second measurement to
determine with certainty whether a gravitational wave has acted or not. This is the
standard quantum limit.

It is instructive to consider measurements of momentum instead of position. The
first measurement of momentum causes an uncertainty in position. This however
does not feed back to disturb the momentum as the momentum is a constant of
motion for a free mass. Hence, subsequent determination of the momentum may
be made with great predictability. The momentum of a free mass is an example of
a quantum nondemolition (QND) variable. The concept of quantum nondemolition
measurements has been introduced over the past few years to allow the detection, in
principle, of very weak forces below the level of quantum noise in the detector. In the
next section we will give a brief review of the concept of a quantum nondemolition
measurement.

267
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We mention here another way in which the standard quantum limit might be
overcome. Quantum nondemolition measurements generally presume that nothing
at all is known about the state of the system to be measured. The standard quantum
limit for a free mass, for example, was derived by assuming no correlation between
position and momentum. If however we are permitted to prepare the state of the
system to be measured, the accuracy of a measurement can be improved without
resort to a QND scheme. For example, in the case of a free particle the position
variance at time τ is given by

Δx2(τ) = Δx2(0)+
Δp2(0)τ2

m2 + 〈Δx(0)Δp(0)+ Δp(0)Δx(0)〉 τ
m

(14.2)

where the possibility of nonzero correlation between position and momentum has
been included. In fact, this correlation may be negative if the initial state of the
particle is chosen to be a ‘contractive state’. If this is the case it is clear that at a later
time τ it is possible that Δx2(τ) < �τ/m, thus allowing a greater accuracy than the
standard quantum limit.

14.1 Concept of a QND Measurement

The basic requirement of a QND measurement is the availability of a variable which
may be measured repeatedly giving predictable results in the absence of a gravita-
tional wave [1]. Clearly this requires that the act of measurement itself does not
degrade the predictability of subsequent measurements. Then in a sufficiently long
sequence of measurements the output becomes predictable.

This requirement is satisfied if for an observable AI(t) (in the interaction picture)

[AI(t), AI(t ′)] = 0 . (14.3)

The condition ensures that if the system is in an eigenstate of AI(t0) it remains in
this eigenstate for all subsequent times although the eigenvalues may change. Such
observables are called QND observables. Clearly constants of motion will be QND
observables. Thus for a free particle, energy and momentum are QND observables
while the position is not as

x(t + τ) = x(t)+ p
τ
m

(14.4)

and

[x(t), x(t + τ)] =
i�τ
m

. (14.5)

For a harmonic oscillator of unit mass

[x(t), x(t + τ)] =
i�
ω

sin ωτ . (14.6)
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and
[p(t), p(t + τ)] = i�ω sin ωτ , (14.7)

thus position and momentum are not QND observables for the harmonic oscillator.
There are, however, QND observables for the harmonic oscillator. We define the

explicitly time dependent quadrature phase amplitudes for the oscillator as follows.

X1(t) = aeiωt + a†e−iωt (14.8)

and
X2(t) =−i(aeiωt −a†e−iωt) . (14.9)

In the Heisenberg picture the quadrature phase operators are given by

X1 = a + a† , (14.10)

X2 =−i(a−a†) , (14.11)

which clearly shows that the quadrature phase operators are constants of the motion.
In terms of the position and momentum the quadrature phase operators are

X1(t) =
(

2ω
�

)1/2

[x(t)cos ωt− p(t)
ω

sin ωt] (14.12)

and

X2(t) =
(

2ω
�

)1/2

[x(t)sin ωt +
p(t)
ω

cos ωt] . (14.13)

Thus the X1 and X2 axes rotate with respect to the position and momentum axes of
phase space, at frequency ω .

Fig. 14.1 Error box in the
phase plane for a harmonic
oscillator. The error box
rotates with respect to the x
and p/ω axes but is stationary
with to the X1, X2 axes
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The behaviour of X1 and X2 are most easily discussed with reference to an am-
plitude and phase diagram. In such a diagram the state of the system is represented
by a set of points centred on the mean and contained within an error ellipse deter-
mined by the variance of the quadrature phases. Alternatively the error box may be
regarded as a contour of the Wigner function. In Fig. 14.1 an error ellipse for the
oscillator is shown. The error ellipse is stationary with respect to the X1 and X2 axes
but rotates with respect to the x and p axes. This clearly illustrates how uncertainties
in momentum feed back into position.

14.2 Back Action Evasion

Having first determined the QND variables of the detector it is necessary to couple
the detector to a readout system or meter. It is essential that the coupling to the
meter does not feed back fluctuations into the QND variable of the detector. In order
to avoid this it is sufficient if the QND variable A commutes with the Hamiltonian
coupling the detector and the meter, HDM, that is

[A, HDM] = 0 (14.14)

This is known as the back action evasion criterion.
In this chapter we are primarily concerned with QND measurements on optical

systems. This requires a slight change in nomenclature. We will refer to the field
with respect to which the QND variable is defined as the ‘signal’ rather than the
detector, and the field upon which measurements are ultimately made as the ‘probe’
rather than the meter.

14.3 Criteria for a QND Measurement

We need to clearly define the objectives of a quantum nondemolition measurement
in an optical context. These objectives may differ depending on the situation of the
measurement. For example, in a transmission with a series of receivers, the goal may
be to tap information from the signal, without degrading the signal transmitted to
the next receiver. In a system used to measure the magnitude of an external force the
goal of the measurement may be state preparation. That is an initial measurement
prepares the system in a known quantum state. The presence of the perturbing force
will be detected by a subsequent measurement on the system. In order to evaluate the
merits of a measurement scheme we shall define a set of criteria which we would
like to be satisfied in a good measurement. We begin by considering the general
measurement scheme depicted in Fig. 14.2 where an observable Xin of the input
signal is determined by a measurement of an observable Yout of the output probe.
The measurement may be characterised by the following criteria [2]:



14.3 Criteria for a QND Measurement 271

Fig. 14.2 General scheme for a QND measurement in an optical context

1. How good is the measurement scheme? This is determined by the level of cor-
relation between the probe field measured by a detector and the signal field incident
on the apparatus. The appropriate correlation function is

C2
X inY out =

|〈X in Y out〉s−〈X in〉〈Y out〉|2
VX inVYout

(14.15)

where V (A) = 〈A2〉−〈A〉2 is the variance in a measurement of A and 〈AB〉s = 〈AB+
BA〉/2. For a perfect measurement device the phase quadrature of the probe output
is equal to the amplitude quadrature of the signal input multiplied by the QND gain,
plus the input probe phase quadrature. In this case the correlation coefficient defined
above is unity, for large gain.

2. How much does the scheme degrade the signal? The quantity of interest here
is the correlation between the signal input field and the signal output field:

C2
X inXout =

|〈X in Xout〉s−〈X in〉〈Xout〉|2
VX inVXout

(14.16)

This is a measure of the back action evasion, that is the ability of the scheme to
isolate quantum noise introduced by the measurement process from the observable
of interest. For an ideal QND scheme we require this correlation to be unity. Thus,
for a perfect QND scheme we have C2

X inY out +C2
X inXout = 2.

3. How good is the scheme as a state preparation device? If we have a perfect
measurement device that does not degrade the signal at all, we satisfy the two previ-
ous criteria exactly, then we must be able to completely predict the state of the signal
output. However, once we leave this ideal case the predictability of the signal out-
put is no longer fully determined by correlations with the signal input. The extreme
example is that of a destructive measurement: independently of how well the input
is measured the output is always the vacuum. On the other hand, the correlation be-
tween the signal and probe output fields is not a good indicator of the quality of state
preparation. Figure 14.3 shows a situation in which both output fields are well cor-
related, but a probe measurement does not allow inference of the signal output field
to be better than the quantum limit. This situation arises when the interaction within
the QND medium introduces significant correlated noise to both output fields.

Given that we have made a perfect measurement of some physical quantity
X with the result x, what is the state of the system after such a measurement
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Fig. 14.3 Illustration of a
situation in which a value of
the probe output has been
measured, but when mapped
onto the error ellipse, does
not permit an inference of
the signal to better than the
quantum limit

conditioned on the result x? In standard quantum mechanics the conditional state
is generally assumed to be an eigenstate of X with an eigenvalue equal to the mea-
sured result, at least for perfect measurements. In the case of the QND measurement
scheme above we then expect the state of the signal mode conditioned on the re-
sults of the probe measurements should in some limit be an eigenstate of Xout. Of
course, the variance of Xout in such a state is zero. Thus as a measure of how well
the scheme prepares eigenstates at the output we need to consider the conditional
variance V (Xout|Y out). This quantity is calculated as follows:

The probability to obtain the result Y out for a probe measurement is given by

P(Y out) = Tr{ρout|Y out〉〈Y out|} (14.17)

(assuming perfect readout of the probe state). The conditional state of the signal
mode based on this result is

ρout =
Trprobe{ρout|Y out〉〈Y out|}

P(Y out)
. (14.18)

Using this result we see that the conditional distribution for Xout is

P(Xout|Y out) = Trsignal{ρout
signal|Xout〉〈Xout|}

=
P(Xout, Y out)

P(Y out)

where

P(Xout, Y out) = Tr{ρout|Xout〉〈Xout|⊗ |Yout〉〈Y out|} . (14.19)

In many cases of interest P(Xout, Y out) is a bivariate Gaussian. In that case one
may show

V (Xout|Y out) = V (Xout)(1−C2
XoutY out) . (14.20)
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Thus, the condition for a perfect state reduction in the conditional state is

C2
XoutY out = 1 . (14.21)

We shall now analyse some possible measurement schemes and see how well they
approach the conditions for an ideal measurement.

14.4 The Beam Splitter

We consider first a beam splitter deflecting part of the incident signal field onto a ho-
modyne detector, as shown in Fig. 14.4. This will serve as a standard of comparison
for other measurement schemes. There is obviously little point in constructing com-
plicated schemes involving cavities containing nonlinear media if they cannot im-
prove on the performance of a beam splitter. We consider the case where the signal
and probe fields are single mode with annihilation operators a and b, respectively.
The amplitude and phase quadratures of the signal and probe fields are defined as

Xa = a + a† , (14.22)

Xφ =−i(a−a†) , (14.23)

Fig. 14.4 An optical mea-
surement scheme for the
quadrature phase based on a
beam splitter
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Ya = b + b† , (14.24)

Yφ =−i(b + b†) . (14.25)

(This notation assumes that the coherent amplitude of each field is real). Note that
according to the uncertainty principle

ΔXaΔXφ ≥ 1 (14.26)

where ΔXa and ΔXφ are the square root of the variances. A precise measurement
of the amplitude quadrature must therefore be at the expense of uncertainty in the
phase. A good back action evading scheme must be able to feed all the quantum
noise induced by the act of measurement into the phase quadrature of the signal.

In the beam splitter the phase change on reflection gives a coupling between
the amplitude quadrature of the signal and the phase quadrature of the probe. We
consider making a measurement on the phase quadrature of the probe in order to
determine the amplitude quadrature of the signal. The input quadrature fields can be
related to the output quadrature fields using the transformation at the beam splitter:

(
Xout

a
Y out

φ

)
=

(√
1−η2 −η
η

√
1−η2

)(
X in

a
Y in

φ

)
(14.27)

where η is real and represents the mirror amplitude reflectivity, and there is a π/2
phase change upon reflection.

The first criterion for a good QND measurement scheme is that it must be a good
back action evading device. In other words, it must be able to isolate the signal field
from quantum noise introduced by the measurement. How well the beam splitter
achieves this is represented by the correlation between the input and the output
signal fields,

C2
X in

a Xout
a

=
(1−η2)VX in

a

(1−η2)VX in
a

+ η2VY in
φ

(14.28)

where VX in
a

denotes the variance of the signal input, and VY in
φ

is the corresponding

variance for the probe. These quantities are a measure of the quantum or classical
noise present in the input fields at the appropriate qudrature phase. For a beam split-
ter with 50% reflectivity, the correlation between the signal input and output is given
by the ratio of the signal noise to the total noise introduced to the system through
both input ports.

The second criterion reflects how well the scheme acts as a measurement device.
The readout measurement is made on the probe output field, so the level of corre-
lation between this quantity and the signal field incident on the device determines
how well a measurement can be made. The appropriate correlation function is

C2
X in

a Y out
φ

=
η2 VX in

a

η2 VX in
a

+(1−η2)VY in
φ

. (14.29)
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Again, for a 50% beam splitter, the correlation is given by the ratio of the incident
signal noise to the total noise introduced.

The third criteria is that the measurement must prepare the output observable
in a well known state. This is given by the variance in the output state after the
measurement has been performed. Using

C2
Xout

a Y out
φ

=
η2(1−η2)(VX in

a
−VY in

φ
)2

[(1−η2)VX in
a

+ η2VY in
φ

][η2VX in
a

+(1−η2)VY in
φ

]
(14.30)

and
VXout

a
= (1−η2)VX in

a
+ η2 VY in

φ
, (14.31)

and the linearity predictor for the beam splitter, the conditional variance is given by

V (Xout
a |Y out

φ ) =
VX in

a
VY in

φ

η2 VX in
a

+(1−η2)VY in
φ

. (14.32)

We would like this variance to be zero. If both signal and probe inputs are in the
vacuum or coherent states with unit quantum variance in both quadratures, then

C2
X in

a Yout
φ

= η2,

C2
X in

a Xout
a

= 1−η2,

C2
Xout

a Yout
φ

= 0

V (Xout
a |Y out

φ ) = 1.

As expected, the correlation between the signal input field and the signal output
field is the intensity transmission coefficient of the mirror. To reduce the amount of
noise added to the signal variable we would like to split off only a small portion of
the light field. However, this reduces the correlation between the signal input field
and the probe field upon which the readout is made, which is given by the intensity
reflection coefficient. It is not possible therefore to simultaneously satisfy the first
two criteria for a good QND scheme. Since the signal and probe fields are com-
pletely uncorrelated, a measurement of the probe does not reduce the signal output
variable at all. The result is that you cannot use a beam splitter to prepare the state
of the output signal with probe fluctuations at the vacuum level. Clearly the perfor-
mance of the beam splitter improves if the input probe has squeezed fluctuations
(Exercise 14.5).

Note that for the beam splitter C2
X in

a Y out
φ

+C2
X in

a Yout
a

= 1, a typical result for a non-

back-action evasion scheme, and significantly less than the maximum result of 2 for
this quantity achieved in an ideal scheme. The quality of a QND scheme can thus
be measured by the extent to which this quantity exceeds unity and approaches the
upper limit of 2.
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14.5 Ideal Quadrature QND Measurements

We now consider another scheme to make perfect QND measurements of the
quadrature phase of a single mode field. We shall assume that the amplitude quadra-
tures of each mode are coupled. That is, the interaction Hamiltonian has the form

H = �χ Xa Ya (14.33)

where χ is the coupling strength and Xa, Ya are defined by (14.22 and 14.24). Clearly
Xa is a QND variable of the signal which satisfies the back action evading condition
(14.12). The input and output quadratures are related by

Xout
a = X in

a ,

Y out
φ = G X in

a +Y in
φ ,

where G = χt is known as the QND gain (t being the interaction time).
A measurement on the phase quadrature of the probe will be used to determine

the amplitude quadrature of the input signal. To begin we calculate the correlation
coefficients which define the measurement. Clearly CX in

a Xout
a

= 1, the signal is com-
pletely unaffected by the measurement. The correlation between the input signal and
the phase of the output probe is

CX in
a Y out

φ
=

G2VX in
a

G2VX in
a

+VY in
φ

(14.34)

where we have taken 〈Y in
φ 〉= 0. For a large QND gain G2� 1,

CX in
a Y out

φ
→ 1 . (14.35)

The conditional variance V (Xout
a |Y out

φ ) which determines the value of the scheme as
a state preparation device is given by

V (Xout
a |Y out

φ ) = VX in
a

(
1− G2VX in

a

G2VX in
a

+VY in
φ

)

≈
VY in

φ

G2

→ 0 for G2� 1.

Again in the limit of high QND gain this device operates as a good state preparation
device.

Another measure of the performance of the measurement is the signal-to-noise
ratio of the probe output
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signal
noise

=
〈Y out

φ 〉2
VYout

φ

=
G2〈X in

a 〉2
G2VX in

a
+VY in

φ

→ 〈X
in
a 〉2

VX in
a

for G2� 1.

In the limit of large QND gain the signal-to-noise ratio of the output probe is equal
to that of the signal input.

14.6 Experimental Realisation

It is possible to achieve a QND coupling of the form in (14.33) by considering two
degenerate modes a and b with frequency ω and orthogonal polarisation, which un-
dergo parametric amplification [3]. The two polarisation modes initially undergo a
mixing interaction using polarisation rotators, after which a mixture of the signal
and probe fields will propagate along each of the ordinary and orthogonal extror-
dinary axis of a KTP crystal pumped by a pulsed intense classical field. After this
amplification step the fields then pass through a second polarisation rotator adjusted
to give the same mixing angle as the first. In order to ensure that the device operates
as an ideal QND scheme the mixing angle of the rotators must be carefully adjusted.
The situation is depicted in Fig. 14.5.

The transformation performed by the polarisation rotators is given by

a(θ ) = acosθ + ibsinθ , (14.36)

b(θ ) = bcosθ + iasinθ , (14.37)

with θ being the mixing angle. The transformation in the parametric amplification
process is

Fig. 14.5 Schematic representation of a perfect QND scheme based on a parametric interaction
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a(r) = acoshr + ib† sinhr , (14.38)

b(r) = bcoshr + ia† sinhr , (14.39)

where r is related to the parametric gain Gf by Gf = er. Using these transformations
for the system in Fig. 14.5, we find that the transformations for the signal and probe
quadratures are

Xout
a = X in

a , (14.40)

Xout
φ = X in

φ +(Gf−G−1
f )Y in

φ , (14.41)

Y out
a = Y in

a − (Gf−G−1
f )X in

a , (14.42)

Y out
φ = Y in

φ , (14.43)

where we have taken the polarisation mixing angle to be

θ = arc cos

⎛
⎝ Gf + 1√

2(G2
f + 1)

⎞
⎠ . (14.44)

Clearly this represents an ideal QND scheme.
In the experiment of La Porta et al. [3], the incident signal was in a coherent state

while the probe was in the vacuum state at input. The measured gain was Gf = 1.33
thus giving θ = 8◦. The output quadratures are measured by phase sensitive homo-
dyne detection using polarisation beam splitters. To demonstrate that the experiment
is operating as a back action evading measurement, three quantities were measured.
Firstly the variances of each quadrature of the signal and probe were measured,
with the gain both on and off. The probe shows a large noise in only one quadrature
when the paramp was on. This is a reflection of the gain term appearing in the am-
plitude quadrature of the probe. The phase quadrature noise was at the shot-noise
level. Secondly, the signal variances alone were measured showing a similar effect.
Finally the variance of the quantities

X± = (Gf−G−1
f )Xout

a ±Yout
a (14.45)

was measured. For the choosen input states one easily verifies that

V (X+) = 1 , (14.46)

V (X−) = 4(Gf−G−1
f )2 . (14.47)

These quantities were measured by adjusting the relative gain of the photo-current
amplifiers to weight the Xout

a quadrature as indicated. This ensures that any correla-
tion between Xout

a and Y out
a will give maximum cancellation of the noise from each

quadrature seperately in the variances for X±. The results of this experiment are
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Fig. 14.6 The combination
of the amplified signal and
probe quadrature at output
versus the phase of the local
oscillator. The variance of X –
occurs at integer multiples of
π. The dotted line corresponds
to the case of the paramp off,
and is identical to randomly
added shot-noise levels of the
signal and probe. The noise
reduction is 0.6 dB below the
combined shot-noise level.
From Arthur La Porta: Phys.
Rev. Lett. 62, 28 (1989)

shown in Fig. 14.6. The results of all experiments taken together clearly indicate
that the scheme is operating as a back action evasion device.

Recently, QND experiments have been performed [4] with two-photon transi-
tions in three-level atoms, where the signal amplitude is strongly correlated with
the probe phase. The measurement correlation between the signal in and the probe
out is C2

X in
a Y out

φ
= 0.45 and the back action evasion correlation between signal in and

signal out is C2
X in

a Y out
φ

= 0.9. The overall performance measure of this device as a

QND optical tap is then determined by C2
X in

a Y out
φ

+C2
X in

a Xout
φ

= 1.35, which exceeds

the beam splitter limit of one, but is still well below the optimal value of 2.

14.7 A Photon Number QND Scheme

We turn now to a scheme to measure the photon number in the signal field. Conven-
tional photon counting techniques absorb quanta. The scheme considered is a true
nondemolition measurement of photons in that no photons are absorbed from the
signal field [5].

Consider the coupled signal/probe system described by the interaction Hamilto-
nian

H1 = �χa†ab†b (14.48)

where a refers to the signal mode, and b to the probe. Such a coupling can occur
in a four wave mixing process in which case χ is proportional to the third-order
nonlinear susceptibility.

Clearly, a†a is a constant of the motion and is thus a QND variable for the signal.
The solution of the Heisenberg equations of motion gives
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a(t) = e−iχb†bta(0) , (14.49)

b(t) = e−iχa†atb(0) . (14.50)

These equations describe a mutual intensity-dependent phase shift for the signal
and probe fields. If we can measure this phase shift on the probe, information on
the signal photon number may be obtained. The probe phase shift may, in fact, be
determined by homodyne detection of a probe quadrature.

Using (14.24 and 14.25) the phase quadrature for the probe field becomes

Y out
φ = cos(κa†a) Y in

φ − sin(κa†a) Y in
a (14.51)

where κ = χt. It would appear from this equation that the signal operator that we
actually measure is not simply a†a but a nonlinear function of a†a. However in any
practical scheme κ is so small that we may approximate the trignometric functions
by the lowest order in κ . Thus, we use

Y out
φ = Y in

φ −κa†a Y in
a . (14.52)

What quantity plays the role of the QND gain in this scheme? To answer this
question we need to evaluate the correlation functions which provide criteria for the
quality of the QND measurement. The first of these functions is

C2
a†aY out

φ
=
|〈a†aY out

φ 〉− 〈a†a〉〈Y out
φ 〉|2

V (a†a)V (Y out
φ )

=
κ2〈Y in

a 〉2V (a†a)
V (Y in

φ )+ 2κF1 + κ2F2

where

F1 = 〈a†a〉〈Y in
a , Y in

φ 〉s ,

F2 = V (a†a)〈Y in
φ 〉2 +V(Y in

a )(V (a†a)+ 〈a†a〉2)

and the symmetrised correlation function is defined by

〈A,B〉s =
1
2
〈AB + BA〉− 〈A〉〈B〉 . (14.53)

If we now assume 〈Y in
a 〉2 � V (Y in

a ), V (Y in
φ ) (that is the coherent amplitude of the

probe is much greater than the fluctuations in either quadrature), we find,

C2
a†aY out

φ
→ 1 (14.54)

when 〈Y in
a 〉 is large. It would thus appear that the coherent amplitude of the probe

plays the role of the QND gain. This result is easily understood in terms of a complex
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amplitude diagram for the probe. If the vector representing the input state of the
probe is very long a small rotation due to the signal makes a large change in the pro-
jection of the coherence vector onto the phase quadrature direction. In a similar way
the signal-to-noise ratio of the output quadrature reduces to the signal-to-noise ratio
for a†a in the limit of 〈Y in

φ 〉 � 1. One easily verifies that the conditional variance

of a†a at the output approaches zero in the same limit. This last result indicates that
the conditional state of the signal output will have sub-Poisonnian statistics.

If κ is not small, we cannot simply approximate the coupling between the signal
and probe as being linear in the signal photon number. A measurement of the probe
quadrature phase still provides information on the signal photon number, however,
due to the multivalued nature of the trignometric functions, the signal is reduced to a
superposition of number states in the case that the initial photon number distribution
of the signal is sufficiently broad [5].

Exercises

14.1 Consider a signal beam and a probe beam coupled via a four wave mixing
interaction;

HI = �χa†ab†b (14.55)

Calculate the QND correlation coefficients between the amplitude quadrature
of the signal Xa=a†+a and the phase quadrature of the probe,Yφ =−i(b−b†).

14.2 Consider a QND measurement in an optical cavity. Generalise the QND cor-
relations to the frequency domain. For example, the stationary spectral co-
variance between signal X and probe Y is defined as

CXY (ω) =
∫

dτe−iωτ 1
2
〈X(t) Y (t + τ)+Y(t + τ)X(t)〉 (14.56)

Using the input/output formulation developed in Chap. 7, calculate the spec-
tral QND correlations between the signal amplitude and the probe phase in
the input and output fields for the intracavity interaction

HI = �
χ
2

XaYφ . (14.57)

14.3 Consider the four wave mixing process with the Hamiltonian

HI = �χa†ab†b (14.58)

taking place inside a cavity. Calculate the QND spectral correlations between
the amplitude quadrature Xa of the signal and the phase quadrature Yφ of the
probe, in the input and output fields.
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14.4 Consider a degenerate parametric amplifier inside a resonant two-sided op-
tical cavity with mirrors with loss rates γ1,γ2. Treat the left-hand input as
the signal and the right-hand input as the probe. Calculate the QND spectral
correlations between the phase quadratures of the signal and the probe.

14.5 Calculate the QND correlations for a beam splitter with a squeezed input
probe.
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Chapter 15
Quantum Coherence and Measurement Theory

Abstract The feature of quantum mechanics which most distinguishes it from clas-
sical mechanics is the coherent superposition of distinct physical states. Many of the
less intuitive aspects of the quantum theory can be traced to this feature. Does the
superposition principle operate on macroscopic scales? The famous Schroedinger
cat argument highlights problems of interpretation were macroscopic superposition
states allowed. In this chapter we discuss schemes to produce and detect superpo-
sition states in an optical context. We shall show that such states are very fragile in
the presence of dissipation and rapidly collapse to a classical mixture exhibiting no
unusual interference features.

The superposition principle is also the source of the “problem of measurement”
in quantum mechanics. We do not attempt to present a solution to this problem here.
Rather we show how the effect of the environment on superposition states enables
a consistent description of the measurement process to be given and which avoids
some of the problems inherent in previous approaches.

15.1 Quantum Coherence

The well known two slit experiment demonstrates the observational consequences
of the coherent superposition of states, namely the possibility of interference pat-
terns. In analogy with the classical theory of wave interference the visibility of the
interference pattern in the probability distributions for various measurements can be
used as a measure of quantum coherence. (There is a possibility of confusion here
which should be cleared up. In the interference of waves we are usually concerned
with the interference of two or more field modes. In this chapter however we are
concerned with the superposition of different states of a single mode.)

The essential point in understanding quantum coherence is the physical distinc-
tion between the coherent superposition state

|ψ >= ∑
j

c j|φ j > (15.1)

283
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and the classical mixture

ρm = ∑
j
|c j|2 |φ j >< φ j| . (15.2)

The density operator corresponding to the pure state in (15.1) is

ρp = ρm + ∑
i�= j

cic
∗
j |φi >< φ j| (15.3)

How is one to distinguish these states in practice? Let X be the operator correspond-
ing to some physical quantity with eigenvalues x. The probability distribution for X
in the state |ψ > is then given by

Pp(x) = Pm(x)+ ∑
i�= j

cic
∗
j < x|φi >< φ j|x > , (15.4)

where Pm(x) is the probability distribution for the state ρm given by

Pm(x) = ∑
i
|ci|2|< x|φi > |2 = ∑

i
|ci|2Pφi(x) (15.5)

Measurements of X will distinguish the states ρm and ρp provided the second term
in (15.3) is nonzero. We are thus led to define the quantum coherence with respect
to the measurement of X by the coherence function

C (x) = ∑
i�= j

cic
∗
j < x|φi >< φ j|x > . (15.6)

How does one choose an operator X such that the resulting probability distribution
will exhibit interference fringes? Clearly one cannot choose operators which are
diagonal in the basis {|φi >} as then the coherence function vanishes. The simplest
example of an operator which distinguishes these states is the projector

P = |ψ >< ψ | , (15.7)

with eigenvalues p ∈ {0,1}. Then

Pp(p) = δ1,p (15.8)

while

Pm(p) =
{

∑ j |c j|4 ifp = 1
1−∑ j |c j|4 ifp = 0

(15.9)

The coherence function is

C (p) = (−1)p(∑
j
|c j|4−1) (15.10)

In practice however there may be no way to measure the operator P.
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In quantum optics one either measures photon number (by photon counting) or
quadrature phase (by balanced homodyne detection). As an example consider the
superposition of two number states

|ψ >=
1√
2
(|n1 > +|n2 >) , (15.11)

and the corresponding mixed state

ρm =
1
2
(|n1 >< n1|+ |n2 >< n2|) . (15.12)

A measurement of photon number will not distinguish these states, however as the
quadrature phase does not commute with the number operator, quadrature phase
measurements should distinguish the states.

Define the quadrature operator

Xθ = (ae−iθ + a† eiθ ) (15.13)

with eigenstates |xθ >. Using the result

< xθ |n >= (2π)−1/4(2nn!)−1/2Hn(
xθ√

2
)e−x2

θ /4−inθ (15.14)

one finds

Pm(xθ ) =
1
2
(P(1)(xθ )+ P(2)(xθ )) (15.15)

and

C (xθ ) = (2π)−1/2e−x2
θ /2(2n1+n2n1!n2!)−1/2 (15.16)

×Hn1(
xθ√

2
)Hn2(

xθ√
2
)cos((n1−n2)θ ) (15.17)

where
P(i)(xθ ) = (2π)−1/2(2nini!)−1Hni(

xθ√
2
)2e−x2

θ /2 (15.18)

Thus a superposition of number states will exhibit interference fringes for some
quadrature phase angle θ . In Fig. 15.1 we plot Pp(xθ ) versus xθ for θ = 0. It is
surprising that, depending on whether n1− n2 is even or odd, certain phase angles
do not give interference. However it is quite clear that the superposition of two
number states will exhibit phase dependent noise despite the fact that number states
themselves have phase independent noise.

As a second example consider the superposition of two coherent states (so called
cat states)

|ψ >= N (|α1 > +|α2 >) , (15.19)

where

N =
(

2 + e−
1
2 (|α1|2+|α2|2)(eα∗1 α2 + eα1α∗2 )

)−1/2
(15.20)
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Fig. 15.1 A plot of the prob-
ability density for the quadra-
ture phase with phase angle
at zero for a superposition
of two number states, with
n1 = 0,n2 = 5
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and

ρm =
1
2
(|α1 >< α1|+ |α2 >< α2|) (15.21)

In Chap. 17 we discuss how states of this kind have been produced for the centre of
mass degree of freedom for a harmonically trapped ion. For cat states, measurements
of either quadrature phase or photon number should exhibit interference fringes as
neither of the corresponding operators commutes with a coherent state projector.
However there is an optimal quadrature phase angle which leads to maximum inter-
ference.

In the case of photon number one finds

Pp(n) = N 2(P(1)(n)+ P(2)(n)+C (n)) (15.22)

where

C (n) = (
1
n!

)exp

(−1
2

(|α1|2 + |α2|2)
)

((α1α∗2 )n +(α∗1 α2)n) (15.23)

where

P(i)(n) = (
1
n!

)|αi|2ne−|αi|2 (15.24)

If we write αi = |αi|eiφ then

C (n) = 2(P(1)(n)P(2)(n))1/2 cos(n(φ1−φ2)) (15.25)

and we see that the degree of interference depends on the phase angle between the
amplitudes of the superposed states. For simplicity let us take |α1| = |α2| = |α| .
Then

Pp(n) = 2N 2(
1
n!

)|α|2ne−|α |
2
(1 + cos(n(φ1−φ2)) . (15.26)

When φ1−φ2 = π , Pp(n) is zero for n odd. Thus a superposition of coherent states π
out of phase but of equal amplitude will contain only even photon number, a similar
situation to that of a squeezed vacuum state.

In the case of quadrature phase measurements one finds
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P(i)(xθ ) = (2π)−1/2 exp

(
−|αi|2 +

xθ
2
− (xθ −αie−iθ )2

2
− (xθ −α∗i eiθ )2

2

)

(15.27)
and thus

C (xθ ) = (
2
π

)1/2ℜexp
(−1

2
(|α1|2 + |α2|2− x2

θ +(xθ −α1e−iθ )2 +(xθ −α∗2 eiθ )2)
)

(15.28)
To gain some insight into these equations we take |α1|= |α2|= |α| and choose

θ = φ+ = (φ1 + φ2)/2 (15.29)

This phase angle bisects the angle between the two coherent states (see Fig. 15.2).
We then have

P(1)(x) = P(2)(x) = (2π)−1/2 exp
(−(x−2|α|cosφ−)2/2

)
(15.30)

and
C (x) = 2P(1)(x)cos(2|α|sin φ−(x−|α|cosφ−)) (15.31)

with φ− = (φ1−φ2)/2 and we have put x = xφ+ . Thus

Pp(x) = 2N 2P(i)(x)(1 + cos(2|α|sin φ−(x−|α|cosφ−)) (15.32)

This is a Gaussian centred at 2|α|cosφ− modulated by an interference envelope (see
Fig. 15.3)

This result has a simple geometric interpretation. Referring to Fig. 15.2 we see
that projecting the two coherent states onto the xφ+ axis gives a maximum overlap
centred on the mean value < Xφ+ >= 2|α|cosφ−. We conclude that whenever the
coherent states are projected onto a quadrature such that they overlap exactly, the
interference will be maximal. Conversely we expect that if we project the coherent

Fig. 15.2 Phase space repre-
sentation of the superposition
of two coherent states. The
dashed line represents the
direction of the quadrature
phase angle which exhibits
maximum interference
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Fig. 15.3 The probability
density for the quadra-
ture phase at phase angle
θ = φ+ = π/2 for a superpo-
sition of two coherent states
with φ− = π/2 . This is the
quadrature direction which
bisects the angle between the
two superposed coherent am-
plitudes, and which exhibits
maximum interference
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states onto a quadrature with θ = φ+±π/2 there will be minimum overlap and thus
the least interference, (see Exercise 15.1).

We now need to consider the effect of dissipation on the interference features
discussed above. With this in mind we write the coherence function in terms of the
complex valued functions C(x),

C (x) = C(x)+C(x)∗ (15.33)

where for a general superposition state

C (x) = ∑
i< j

cic
∗
j < x|φi >< φ j|x > (15.34)

A convenient measure of the degree of quantum coherence is the quantum visibility
defined by

V (x) =
|C(x)|

(P(1)(x)P(2)(x))1/2
(15.35)

In all the cases considered above V (x) is unity for all values of x and the states
considered thus have maximum quantum coherence. However when dissipation is
present this is no longer the case.

15.2 The Effect of Dissipation

In this section we show that quantum coherence associated with superposition states
is extremely fragile in the presence of nonunitary effects such as damping. Such
effects cause a decay of quantum coherence at a rate which is proportional to a
parameter which measures the separation of the superposed states. For macroscopic
separations this decay can be very rapid.

We first consider the effects of dissipation. The master equation for a damped
harmonic oscillator in the interaction picture is
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dρ
dt

=
γ
2
(2aρa†−a†aρ−ρa†a) (15.36)

where γ is the damping constant and the reservoir is taken to be at zero temperature.
We will solve this equation for an initial superposition of coherent states using the
normally ordered characteristic function,

X(λ ,t) = tr(ρ(t)eλ a†
e−λ ∗a) (15.37)

Using (15.36) the equation of motion for X(λ ,t) is

∂X
∂ t

=− γ
2
(λ ∗

∂X
∂λ

+ c.c.) (15.38)

where c.c. means complex conjugate. The solution to this equation is

X0(λ e−γt/2,λ ∗e−γt/2) (15.39)

where
X0(λ ,λ ∗) = X(λ ,0) (15.40)

For the initial state given in (15.19), a superposition of coherent states, we find

X0(λ ,λ ∗) = N 2
2

∑
i, j=1

e(λ α∗i −c.c.) < αi|α j > (15.41)

Thus

X(λ ,t) = N 2
2

∑
i, j=1

< αi|α j > exp
(
(λ α∗i − c.c.)e−γt/2

)
(15.42)

The corresponding solution for the density operator is

ρ(t) = N 2
2

∑
i, j=1

< αi|α j >(1−e−γt) |αie
−γt/2 >< α je

−γt/2| (15.43)

Due to the coefficient with i �= j in this expansion the contribution of the off-diagonal
terms to the coherence function will be small. Thus the superposition is reduced to
a near mixture of coherent states.

The visibility for any measurement is easily found to be

V (x) = |< α1|α2 > |(1−e−γt) (15.44)

where x = xθ for quadrature phase or x = n for number measurements. For short
times this is given approximately by

V (x)≈ exp(− γt
2
|α1−α2|2) (15.45)
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Thus the rate at which coherence decays is proportional to the square of the distance
between the superposed coherent amplitudes. In the last section we considered the
case α1 = −α2 which gave good interference fringes centered on the origin for the
appropriate quadrature. However we now see that such fringes must decay rapidly
causing the quadrature phase statistics to be indistinguishable from a classical mix-
ture of coherent states.

This result is not confined to amplitude damping. For example the phase diffusion
model discussed in Exercise 6.3 for which the master equation is

dρ
dt

=
γ
2
(2a†aρa†a− (a†a)2ρ−ρ(a†a)2) (15.46)

The solution for the matrix elements in the number basis is

< n|ρ(t)|m >= exp(− γ
2

t(n−m)2) < n|ρ(0)|m > (15.47)

If ρ(0) is a superposition of number states |n1 > and |n2 > the visibility of the
quadrature phase statistics is given by

V (x) = exp(− γt
2

(n1−n2)2) (15.48)

which shows a rapid decay when n1−n2 is large.
These examples are special; the visibility in each case decays in the same way

for all measurements which give interference fringes. This is because the superposed
states are eigenstates or near eigenstates of the operator appearing in the irreversible
part of the evolution equation. This is an important point to which we shall return
in the next section. In other cases the visibility is more complicated. For example
consider the effect of phase diffusion on the quadrature phase statistics of a super-
position of two coherent states with α1 = −α2 = q0 where q0 is real. If we choose
θ = π/2 (that is we project onto the imaginary axis in the complex amplitude dia-
gram) we find that for short times

V (xπ/2)≈ 1− γt(2q0xπ/2)
2 (15.49)

As expected the coherence decays from unity at a rate which is proportional to the
square of the separation of the superposed states. In Fig. 15.4 we plot the probability
distribution for quadrature phase at θ = π/2 with a superposition of coherent states,
with q0 = 2, subject to phase diffusion with different damping rates.

A similar result may be derived for quadrature phase measurements on a super-
position of number states undergoing damping. To show this we use the complex
P-representation for the projector |ni >< n j|

|ni >< n j|=
∮

c1

dα
∮

c2

dβ Pi j(α,β )
|α >< β ∗|
< β ∗|α >

(15.50)
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Fig. 15.4 A plot of the probability distribution for quadrature phase, θ = π/2, on an oscillator
prepared in a coherent superposition of coherent states, |2〉+ | − 2〉, which is subject to phase
diffusion. (a) γt = 0 (b) γt = 0.1 (c) γt = 0.5. The loss of visibility and spreading of the distribution
is a conseqence of phase diffusion

where

Pi j(α,β ) =− 1
4π2 eαβ (ni!n j!)1/2α−(ni+1)β−(n j+1) (15.51)

and c1,c2 are contours encircling the origin. Thus under time evolution |ni >< n j|
evolves to

(|ni >< n j|)t =
∮

c1

dα
∮

c2

dβ Pi j(α,β ) < β ∗|α >(1−e−γt)

× |αe−γt/2 >< β ∗e−γt/2|
< β ∗|α >

(15.52)

Using this result one may show

C(xθ ,t) = (2π)−1/22−(n1+n2)/2(n1!n2!)−1/2(−1)n1+n2

exp

(
−x2

θ
2
− i(n1−n2)θ

)
e−γt(n1+n2)/2

min(n1,n2)

∑
p=0

2peγt p p!

(
n1

p

)(
n2

p

)
Hn1+n2−2p(

xθ
2

) (15.53)

The dominant term in the sum occurs for p = min(n1,n2). For example if n1 > n2

the time dependence of the dominant term is proportional to exp(−γt(n1−n2)/2).
As expected the coherence decays at a rate which is proportional to the separation
of the states.

15.2.1 Experimental Observation of Coherence Decay

The Haroche group in Paris demonstrated the rapid decay of coherence for a super-
position of two coherent states. They used Rydberg atoms in microwave cavities [1].
Two Rydberg atomic levels with ground state |g〉 and excited state |e〉 interact with
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a cavity field. The cavity field is well detuned from the atomic resonance. The effect
of the interaction is to change the phase of the field in the cavity conditional on the
atomic state. An effective Hamiltonian for this interaction can be written as

HC = h̄χa†aσz (15.54)

where σz = |e〉〈e|− |g〉〈g|.
If the cavity C is initially prepared in a weak coherent state, |α〉, (in the exper-

iment |α| = 3.1) and the atom is prepared in an equal superposition of the ground
and excited states, the total system state evolves to

|ψ(τ) =
1
2

(|g〉|αeiφ 〉+ |e〉|αe−iφ 〉) (15.55)

where φ = χτ , for an interaction time τ . The state in (15.55) is an entangled
state between a two level degree of freedom and an oscillator. To obtain a state
which entangles the atomic degree of freedom with coherent superpositions of co-
herent states we use an independent laser to rotate the atomic states by |g〉 →
(|g〉+ |e〉)/√2, |e〉 → (|g〉− |e〉)/√2. The state at the end of this last pulse is

|ψ〉out =
1
2

(
|g〉(|αeiφ 〉+ |αe−iφ 〉)+ |e〉(|αeiφ 〉− |αe−iφ 〉)

)
(15.56)

If we now measure the atomic state |g〉 (by state selective ionisation in the experi-
ment) the conditional state of the field is either

|ψ(g)〉out = N+(|αeiφ 〉+ |αe−iφ〉) (15.57)

or
|ψ(e)〉out = N−(|αeiφ 〉− |αe−iφ 〉) (15.58)

where N± is the normalisation constant. These conditional states are superpositions
of coherent states.

In this discussion we ignored the cavity decay as this is small on the time scale
of the interaction time between a single atom and the cavity field. To observe de-
coherence we prepare the field in a coherent superposition of coherent states, as
previously described, and then let it evolve for a time so that there is a significant
probability that at least one photon is lost from the cavity. We then need to find a way
to probe the field state at the end of that time. It was not possible to directly measure
the state of a microwave cavity field directly. Instead the Haroche experiment used
a second atom as a probe for the field state.

There are two possible results for the first atomic measurement (g, e) with the
corresponding conditional states given by (15.57 and 15.58). Now consider sending
in another atom after some delay time T and ask (for example) for the probability to
find the second atom in the excited state given one or the other of the two conditional
states, that is to say, we seek the conditional probabilities p(e|g) and p(e|e) (where
the conditioning label refers to the result of the first atom measurement). As the
respective conditional states are different, these probabilities should be different.
The extent of the difference is given by
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Fig. 15.5 A plot of the two-
atom correlation η versus the
delay time between successive
atoms for two different values
of the conditional phase shift.
The theoretical results are
shown as a dashed and solid
line. From Haroche et al.
Phys. Rev. Letts., 77, 4887,
(1996), Fig. 4b
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η = p(e|e)− p(e|g) (15.59)

If the second atom is sent in a time T after the first the two conditional states,
including decoherence, after this delay time can be written in the general form

|ψ
g
e〉 = N 2

±
(
|α(t)eiφ 〉〈α(t)eiφ |+ |α(t)e−iφ〉〈α(t)e−iφ |

)

±D
(
|α(t)eiφ 〉〈α(t)e−iφ |+ |α(t)e−iφ 〉〈α(t)eiφ |

)

where D is a measure of the decoherence. In the limit that D → 0, these two states
are indistinguishable and the two conditional probabilities p(e|g) and p(e|e) are the
same, so that η → 0. Thus by repeating a sequence of double atom experiments the
relevant conditional probabilities may be sampled and a value of η as a function of
the delay time can be determined.

In Fig. 15.5 we reproduce the results of the experimental determination of η for
two different values of the conditional phase shift, φ , as a function of the delay
time in units of cavity lifetime. As expected the correlation signal decays to zero.
Furthermore it decays to zero more rapidly for larger conditional phase shifts, that
is to say it decays to zero more rapidly when the superposed states are further apart
in phase-space. The agreement with the theoretical result is very good.

15.3 Quantum Measurement Theory

The object of any physical theory is to provide an explanation for the results of
measurements. It is usually the case that measurements are made by coupling a
macroscopic device to the system of interest which may be of any size, see Fig. 15.6.
If the system is very small then some element of amplification is required. Can this
process, considered purely as a physical interaction between systems, be described
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measured system

environment

metre

apparatus

Fig. 15.6 A schematic illustration of a generic measurement illustrating that a measured system
is an open system. The metre is a subsystem of the entire measurement apparatus which includes
many other degrees of freedom labeled “environment”. A particular metre variable, the “pointer”
position is observed and will fluctuate in time around an average pointer position

entirely within the framework of quantum mechanics? Would such a description, if
given, accord with our intuitive understanding of real measuring devices? How is
the measured system effected by the measurement? These are questions which are
generally included under the heading of the measurement problem.

We will primarily be concerned with measurements that are continuous in time,
that is to say, a measurement for which the measurement results are a stochastic pro-
cess. An example of such a measurement in quantum optics is balanced homodyne
detection for which the measurement record is the difference photocurrent. For any
measurement we can ask two generic questions:

1. What is the measured system state averaged over all measured results: uncondi-
tional dynamics.

2. What is the measured system state given a record of measured results: condi-
tional dynamics.

We will take the first question to begin with.

15.3.1 General Measurement Theory

The unconditional state after the measurement is related to the initial state of the
system via a completely positive map (CP map) which takes density operators to
density operators.

ρ0→ ρ ′ = Φ[ρ0] (15.60)

The Krauss representation theorem [2] enables us to write all CP maps as

Φ[ρ0] = ∑
α

ÊαρÊ†
α (15.61)
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where

∑
α

Ê†
α Êα = 1 (15.62)

ensures normalisation. The sum in (15.61) could stand for an integral. The Krauss
decomposition is not unique: there is a unitary equivalence class of possible Krauss
decompositions.

Suppose we measure some metre quantity for which the result is a real number x.
The statistics of measurement results is given in terms of a positive operator, F̂(x)
as

P(x) = tr(ρF̂(x)) (15.63)

which is the most general way to construct probability distributions from density
operators allowed by the quantum formalism. The conditional state given the mea-
surement result is,

ρ (x) =
ϒ̂ (x)ρϒ̂ †(x)

P(x)
(15.64)

where F̂(x) = ϒ̂ †(x)ϒ̂ (x). The unconditional state is given by,

ρ ′ =
∫

dxP(x)ρ (x) =
∫

dxϒ̂ (x)ρϒ̂ †(x) (15.65)

which relates the CP map to the measurement operators.
As an example of this formalism we consider the measurement of a generic two

level system (a qubit) coupled to a measurement apparatus for which the pointer
variable has real eigenvalues. To specify the nature of the measurement we need
only specify the Krauss measurement operator ϒ̂ (x),

ϒ̂Δ (x) = (2πΔ)−1/4 exp

[
− (x−κσ̂z)2

4Δ

]
(15.66)

where σz = |1〉〈1|− |0〉〈0| is the measured system observable and {|0〉, |1〉} are an
orthonormal basis for the two level system. (see Exercise 15.5). The probability
density for measurement result, x(t) at time t;

P(x,t) = tr(ρ(t)ϒ̂ †
Δ (x)ϒ̂Δ (x)) (15.67)

The moments of this distribution are related to the quantum moments of the mea-
sured system observable by

E (x(t)) = κ〈σ̂z(t)〉
E ((Δx(t)))2 = Δ + κ2〈(Δσ̂z(t))2〉

Thus we regard Δ as the noise added to the signal by the apparatus. Using the fact
that σ2

z = 1 the measurement operator may be written

ϒ̂Δ (x) =
√

P1(x)|1〉〈1|+
√

P0(x)|0〉〈0| (15.68)



296 15 Quantum Coherence and Measurement Theory

where

Pα(x) = (2πΔ)−1/2 exp

[
− (x +(−1)ακ)2

2Δ

]
(15.69)

where α = 1,0. The unconditional state, is then given by (15.65) as

ρ ′ = p1|1〉〈1|+ p0|0〉〈0|+ e−κ2/2Δ (|1〉〈0|+ |0〉〈1|) (15.70)

where pα = 〈α|ρ |α〉, and α = 0,1. We can now define the good measurement limit
as e−κ2/2Δ << 1, and the measurement result statistics easily enable the eigenstates
of σz to be resolved. In this limit the unconditional post measurement state is diag-
onalised in the eigenbasis of σz.

15.3.2 The Pointer Basis

How does the construction of a physical measurement apparatus determine what
system quantity is measured? This is one of the key components of the measure-
ment problem. To understand why there might be a problem we will consider a
simple model of the interaction between a measured system S and a measuring de-
vice M. Let us first ignore the macroscopic nature of M and simply treat it as a
single quantum system with one degree of freedom. As we shall see such an as-
sumption does not lead to an adequate description of the measurement process. The
macroscopic nature of M is essential for a complete description.

Let {|mi >} denote a set of eigenstates of some meter quantity and let {|si >}
denote the eigenstates which diagonalise the system operator we are seeking to mea-
sure. Suppose the initial state of the system is |m0 > ⊗|si > , and further suppose
that under unitary evolution this state evolves to

|ψi(t) >= |mi >⊗|si > (15.71)

Then for a general system state

|ψ >= ∑
i

ci|si >⊗|m0 > (15.72)

the state at time t will be

|ψ(t) >= ∑
i

ci|mi >⊗|si > (15.73)

We regard mi as the value read-out from the meter scale. If an observer finds the
meter in a state |m j > (with probability |c j|2 ) the system is subsequently (i.e. con-
ditionally ) described by the state |s j >. It is clear that in effect we have measured
some physical quantity S which is diagonal in the basis {|si >} ,
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S = ∑
i

ai|si >< si| (15.74)

Suppose one only knows that a measurement has taken place but we do not select
a particular result. The state of the system must then be described by the reduced
density operator obtained by tracing out over the meter states,

ρs = ∑
i

|ci|2|si >< si| (15.75)

Thus as a result of the measurement the density operator of the system is diagonal in
the basis which diagonalises the measured operator. Alternatively the basis in which
ρs is diagonal determines the system operator which has been measured. This is the
standard description of the measurement process. Unfortunately it is inadequate as
we now explain.

The description given above assumed we read out a meter quantity which is di-
agonal in the basis {|mi >}. Suppose however we decide to read out another meter
quantity diagonal in the basis {|m̃i >}. We can then express the meter states |mi >
in the alternative basis {|m̃i >} ,

|mi >= ∑
j

< m̃ j|mi > |m̃ j > (15.76)

The state of the combined system after the interaction is then

|ψ(t) > = ∑
i

ci|mi >⊗|si >

= ∑
j

d j|m̃ j >⊗|r j > (15.77)

where
d j|r j >= ∑

i
ci < m̃ j|mi > |si > (15.78)

Although the system meter coupling has not altered there is now some ambiguity as
to what system operator has been measured; is it

S = ∑
i

ai|si >< si|

or
R = ∑

i

bi|ri >< ri| ? (15.79)

This ambiguity can only be removed if we say that the meter is so constructed that
the only physical property that we readout is the one which is diagonal in the basis
{|mi >}. What is the property of the meter which determines such a preferred or
pointer basis?

We can answer this question by admitting that a true measuring device must be
macroscopic and thus contain many degrees of freedom. Thus, in addition to the
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read-out variable, we must consider the meter as composed of many other degrees
of freedom possibly coupled to the the read-out variable. These other degrees of
freedom cannot be determined in any realistic scheme and thus may be treated as
a environment. In order to model this situation we now divide the measurement
scheme into system+meter+environment. The system and meter are directly coupled
and the meter is coupled to the environment, see Fig. 15.6. As Zurek has shown it
is the nature of the coupling between the meter and the reservoir which determines
the pointer basis.

In order that the special correlation between the system and the meter given by
(15.73) be preserved in the presence of the coupling to the reservoir, described by
some Hamiltonian HME, we require that the pointer basis {|mi >} be a complete set
of eigenstates for a pointer quantity M which commutes with HME. This ensures that
fluctuations from the reservoir do not find there way back to the measured system
quantity S. In many situations it may not be possible to find an operator which
satisfies this condition exactly. However an approximate pointer basis may exist in
as much as the diagonal elements of the density operator in such a basis relax on a
very long time scale while the off-diagonal elements decay on a much shorter time
scale.

Thus it is the meter-reservoir interaction which determines the pointer observ-
able M and thus the corresponding pointer basis appropriate to the measurement.
The to-be-measured quantity is only defined in the course of the meter-reservoir in-
teraction; a situation consistent with Bohr’s general description of measurement in
quantum mechanics.

The meter cannot be observed in a superposition of pointer basis states as its
state vector is being continually collapsed. It is the monitoring of the meter by the
reservoir which results in the apparent state reduction of the system and the meter is
so constructed to ensure that this occurs. The correlations between the correspond-
ing system and pointer basis states are preserved in the final mixed state density
operator

∑
i, j

cic
∗
j |mi >< mj|⊗ |si >< s j| →

∑
i
|bi|2|m̃i >< m̃i|⊗ |rp

i >< rp
i | (15.80)

where {|rp
i >} are the system states determined by the pointer basis, referred to as

the relative states.
There is a close connection between the concept of a quantum nondemolition

measurement and the concept of a pointer basis. The condition that an operator Q(t)
be a QND variable is that (in the interaction picture)

[Q(t),Q(t ′)] = 0 (15.81)

Applying this idea to the measurement description above it is clear that the pointer
observable P, which determines the pointer basis, must be a QND variable of the
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meter. This ensures that an initial eigenstate of P evolves entirely within the pointer
basis set.

In the theory of QND measurements we also require the variable Q to maintain
its QND property in the presence of couplings to other systems, the reservoir in
our example, which represent further stages of the meter device. This will be true
provided the back action evasion criterion is satisfied

[Q(t),HME] = 0 (15.82)

where HME represents the interaction Hamiltonian between the system of the QND
variable and other systems to which it is coupled (the reservoir in our case). This
property is precisely the property that the pointer observable must satisfy. We may
thus view the pointer observable as a QND variable of the meter which is coupled
to the environment by a back action evasion coupling.

15.4 Examples of Pointer Observables

In Sect. 15.1 we considered a number of models which lead to the density operator
becoming diagonal in a preferred basis. For example, if the meter is a harmonic
oscillator coupled to the bath by

HME = a†aΓE (15.83)

so that it evolves according to the master equation (15.46) the state of the meter
becomes diagonal in the number basis. The pointer observable is a†a and (15.83)
represents an ideal back action evasion coupling.

As another example suppose that the amplitude of an oscillator is coupled to the
environment by

HME = aΓ † + a†Γ (15.84)

This is not a back action evasion coupling, however the meter state tends to become
diagonal in the coherent state basis which are eigenstates of the operator a. Unfor-
tunately the diagonal elements of the density operator in this basis are also changed.
However as we saw in (15.43) for short times the diagonal elements do not change
much, yet coherence between states separated by large coherent amplitudes decay
quite rapidly. In this case we can say that the coherent states are an approximate
pointer basis.

15.5 Model of a Measurement

We are now able to consider a full model of a quantum limited measurement in-
cluding the interaction of the meter with the environment. The quantum system
and meter are taken to be harmonic oscillators with annihilation operators a and b
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respectively. The coupling between the system and the meter is taken to be quadratic
in the system amplitude and the interaction Hamiltonian is

HSM =
h̄
2

a†a(bE∗+ b†E) . (15.85)

Such a system may represent a four wave mixing interaction in quantum optics,
where one field is taken as classical of amplitude E . The measured system operator
is, as we shall see, a†a (or some function thereof).

We assume that mode b is coupled to the environment by amplitude coupling

HME = bΓ † + b†Γ . (15.86)

This will determine a particular pointer basis. There are good physical reasons why
this is a suitable choice for HME. First, if the oscillators are realised as field modes
this coupling represents the usual system-bath interaction of a linear loss mecha-
nism. In particular it could represent the interaction of a field mode with a photo-
electron counter. Perhaps the most important reason for choosing HME in this form
however is that it leads to the coherent state pointer basis. As coherent states have
a well defined semiclassical limit this is a desirable basis for a real (i.e. classical)
measuring device. We now solve for the complete dynamics of the system and meter
coupled to the bath.

The density operator for the system and meter after tracing out the reservoir
obeys the master equation

dρ
dt

=
−i
2

[(Eb† + E∗b)a†a,ρ ]+
γ
2
(2bρb†−b†bρ−ρb†b) (15.87)

We have assumed the environment is at zero temperature. Initially the state of the
system is arbitrary while the meter is in the ground state

ρ(0) =
∞

∑
n,m=0

(ρnm|n >< m|)S⊗ (|0 >< 0|)M (15.88)

where we have expanded the system state in energy eigenstates and ρnm =<
n|ρs(0)|m >. Equation (15.87) may be solved by the characteristic function. The
solution is,

ρ(t) =
∞

∑
n,m=0

exp

( |E|2
γ2 (n−m)2(1− γt/2− e−γt/2)

)

× (|n >< m|)S⊗
( |αn(t) >< αm(t)|

< αm(t)|αn(t) >

)
M

(15.89)

where |αn(t) > is a meter coherent state with

αn(t) =
En

γ
(1− e−γt/2) (15.90)
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In the long time limit we have

ρ→∑
n

P(n)(|n >< n|)S⊗ (|αn >< αn|)M (15.91)

where P(n) is the initial number distribution for the system. This is a mixture of
number states in the system, perfectly correlated with a mixture of coherent states
in the meter. It is thus of the general form of (15.80). The coherent states |αn >
are the pointer basis states and the number states the corresponding relative states.
The amplitude of the coherent states can be made arbitrarily large by increasing the
strength of the system meter coupling E . Hence this model includes amplification
in a natural way. The large E limit is the appropriate limit for an accurate measure-
ment [3]. In fact the states |αn > for different values of n become approximately
orthogonal as the coupling strength is increased.

We have assumed in this analysis that the environment is at zero temperature.
For photoelectric detection this is a good assumption at optical frequencies. Were
the environment not taken at zero temperature there would be an additional thermal
spread in the diagonal part of the meter states.

This model contains all the features of the measurement process discussed in
Sect. 15.3.2. The correlations between the system and the meter are created by uni-
tary evoultion. The (almost complete) reduction of the meter states to the pointer
basis (the coherent states) occurs as a result of nonunitary dissipative evolution,
which causes the off-diagonal elements of the meter state in the pointer basis to de-
cay. It is clear that the model represents the measurement of some function of the
system number operator a†a. To determine what this function is we must reconsider
the interpretation of the environment as a photoelectron counter. If we assume that
every meter quanta lost to the environment is actually counted in the detector, a full
analysis shows that in fact the model describes the measurement of the square of the
number operator.

From (15.91) we can calculate the reduced state of the system by tracing out
over the meter states. The resulting state has an exponential decay of off-diagonal
elements in the number basis which goes as t2 for short times. Such a dependence
indicates that for short times a Markovian evolution equation does not describe the
evolution of the system state. However if the rate of photon counting, γ , is very
large then this short time behaviour is rapidly superceeded by an exponential linear
dependence. In this case the effective master equation for the system state is

dρS

dt
=− |E|

2

2γ
[
a†a,

[
a†a,ρS

]]
(15.92)

In this strong measurement limit we see that as far as the system is concerned the
effect of the measurement of photon number is to induce a diffusion in the oscillator
phase. In some sense the phase is the conjugate variable to the photon number so
this result is consistent with the uncertainty principle.
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15.6 Conditional States and Quantum Trajectories

We turn now to discuss the second question that may be asked of a measured system:
what is the conditional state conditioned on a measurement result? In Chap. 6 we
discussed an approach to solving master equations based on unravelling the solution
as an average over a quantum trajectory: a solution to a stochastic master equation
or stochastic Schrödinger equation. Here we will show that a quantum trajectory can
describe the conditional evolution of the state of a continuously measured system,
conditioned on the stochastic measurement record.

A simple model for continuous can be built out of the two-level mode discussed
in Sect. 15.3.1. To get to a continuous measurement we let readouts occur at Poisson
distributed times at rate γ . The system then obeys the master equation

ρ̇ = −i[H,ρ ]+ γ
(∫ ∞

−∞
dxϒ̂Δ (x)ρϒ̂ †

Δ (x)−ρ
)

= −i[H,ρ ]− γ
4

(
1− e−κ2/2Δ

)
[σ̂z, [σ̂z,ρ ]]

Clearly this describes a QND measurement of σz. We now take the limit of weak,
rapid measurements γ >> 1, Δ >> κ2 to get

ρ̇ =−i[H,ρ ]−D[σ̂z, [σ̂z,ρ ]] (15.93)

where D = γκ2

8Δ is the decoherence rate in the σ̂z basis. When D is large decoherence
is rapid, which should correspond to a good measurement.

The measurement record is a real valued classical stochastic variable, x(ti), con-
ditioned on the state of the system. To get a continuous stochastic record we define
a stochastic differential: dy(t) = dN(t)x(t) where dN(t) is a Poisson process:

dN(t)2 = dN(t)
E (dN(t)) = γdt

We can now take the diffusive limit. Consider a time δ t such that γδ t >> 1 yet,
Dδ t << 1.

E (y(t + δ t)− y(t)) ≈ γδ tκ〈σ̂z(t)〉c (15.94)

E ((y(t + δ t)− y(t))2 ≈ γδ tΔ (15.95)

we can then approximate the observed process by the Ito stochastic d.e.

dy(t) = γκ
[
〈σ̂z(t)〉cdt +(8D)−1/2dW(t)

]
(15.96)

where dW(t) is the Wiener process: E (dW (t)) = 0, E (dW (t)2) = dt. If D is large,
then we will have a good signal-to-noise ratio.
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Under the same assumptions we can derive the conditional master equation and
the stochastic Schrödinger equation for this measurement. Using (15.64 and 15.67)
and taking the limit of weak rapid measurement as above we find that the conditional
master equation is

dρc(t) =−i[H,ρc(t)]dt−Ddt[σz, [σz,ρc(t)]]+
√

2DdW (t)H [σz]ρc(t) (15.97)

and the stochastic Schrödinger equation is

d|ψc(t)〉 = −iHdt|ψc(t)〉−Ddt
[
1−2〈σz〉cσz + 〈σz〉2

] |ψc(t)〉

+
√

2D(σz−〈σz〉c)dW (t)|ψc(t)〉 (15.98)

This leads us to define a quantum limited measurement as measurement for which
the signal-to-noise is determined only by the intrinsic quantum noise of the mea-
sured system, and the minimum back-action noise consistent with the uncertainty
principle. Under these conditions the decoherence rate is determined only by the
back-action noise due to measurement. The example considered here is an example
of a quantum limited measurement. Usually a measurement is not quantum-limited
as the system dynamics has other irreversible channels (e.g. dissipation) and other
sources of noise (e.g. thermal) are added to the measured signal.

The stochastic master equation has an interesting property. Using (15.97) we can
derive equations of motion for the conditional mean value of σz. Define zc = 〈σz〉c

dzc = (. . .)dt + 2
√

D(1− z2
c)dW (t) (15.99)

where . . . refers to that part of the dynamics arising directly from the Hamiltonian
term. If we assume that [σz,H] = 0, the stochastic dynamics is determined entirely
by the measurement. It is then clear that there are two fixed points, zc = ±1 which
correspond to two eigenstates of σz. In a simulation the result is that the condi-
tional state tends to localise on one or the other of the eigenstates of σz. This is the
continuous measurement version of quantum state reduction.

15.6.1 Homodyne Measurement of a Cavity Field

Consider now a single mode cavity damped into a zero temperature heat bath (see
Sect. 6.1). The environment is the multi-mode field external to the cavity. Some
of these external modes are coupled into a balanced homodyne detection system.
The change in the state of the system, over a time interval dt, can be described by
a single jump operator a. In what follows we choose the units of time so that the
cavity decay constant, γ is unity. We can define two Krauss operators. Firstly we
define Ω1 = a

√
dt, corresponding to a conditional Poisson process with probability

〈a†a〉dt. Normalization requires a second Krauss operator, Ω0 = I−a†adt/2− iHdt,
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where H is Hermitian. Then the unconditional master equation without feedback is
just the familiar Lindblad form

dρ = Ω0ρΩ0 + Ω1ρΩ1−ρ

= −i[H,ρ ]dt + aρa†dt− 1
2
(a†aρ + ρa†a)dt

≡ −i[H,ρ ]dt +D [a]ρdt . (15.100)

A fermionic example is given in [4].
In homodyne detection, the output field from the cavity is mixed with a strong

coherent field, the local oscillator. This corresponds to a displacement of the cavity
field a. Obviously this does not change the unconditional dynamics of the cavity
field. With this in mind we first note that given some complex number α = |α|eiφ ,
we may make the transformation

a→ a + α

H → H− i|α|
2

(e−iφ a− eiφa†) (15.101)

and obtain the same master equation. In the limit as |α| becomes very large, the rate
of the Poisson process is dominated by the term |α|2. In this case it may become
impossible to monitor every jump process, and a better strategy is to approximate
the Poisson stochastic process by a Gaussian white-noise process.

For large α , we can consider the system for a time δ t in which the system changes
negligibly but the number of detections δN(t) ≈ |α|2δ t is very large; then we can
approximate δN(t) as

δN(t)≈ |α|2δ t + |α|〈e−iφ a + a†eiφ 〉cδ t + |α|δW (t), (15.102)

where δW (t) is normally distributed with mean zero and variance δ t (a Wiener
increment).

We now define the stochastic measurement record as the current

Ihom
c (t) = lim

α→∞

δN(t)−|α|2δ t
|α|δ t

(15.103)

= 〈e−iφ a + eiφa†〉+ dW(t)/dt . (15.104)

In balanced homodyne detection, this current corresponds to the photo-current.
Given this stochastic measurement record, we can determine the conditional state
of the quantum system by the stochastic master equation (SME)

dρa(t) = −i [H, ρc(t)]dt +D [e−iφ a]ρc(t)dt

+H [e−iφ a]ρc(t)dW (t). (15.105)

In the above equations, the expectation 〈a〉c denotes the average over the conditional
state, Tr(ρca) and H is a superoperator defined in Sect. 6.7
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H [c]ρ = cρ + ρc†−ρ Tr[cρ + ρc†] . (15.106)

Let us define the quadrature phase operator

Xθ = e−iφ a + eiφa† (15.107)

The corresponding stochastic Schrödinger equation is

d|ψc(t)〉 =
{
−iHdt− 1

2

[
a†a−2〈Xθ/2〉c + 〈Xθ/2〉2c

]
dt

+ [a−〈X/2〉c]dW (t)}|ψc(t)〉 (15.108)

Note that as |ψc(t)〉 approaches a coherent state for which a|ψc(t)〉= 〈X/2〉c|ψc(t)〉
the noise term tends to zero. This leads to the stochastic localisation of the condi-
tional state on the set of coherent states. If we ignore normalisation of the state, we
get a very direct sense of how the measured photo current conditions the state,

d|ψ̄c(t)〉= dt

[
−iH− 1

2
a†a + Ihom

c (t)
]
|ψ̄c(t)〉 (15.109)

Exercises

15.1 Consider the superposition of two coherent states

|ψ >= N (|α0 > +|−α0 >)

where α0 is real. Show that the probability distribution for X1 = a + a† is a
double peaked Gaussian (α0 > 1) while the distribution for X2 =−i(a−a†)
shows interference fringes.

15.2 Consider the Hamiltonian

H = h̄ωa†a + h̄χ(a†a)2 (15.110)

Show that this Hamiltonian can generate a superposition of two coherent states
or two squeezed states of the type discussed in the preceeding questions.

15.3 The spin coherent states are defined by

| j;γ >= exp

(
−θ

2
(J+e−iφ − J−eiφ )

)
| j, j > (15.111)

where γ = eiφ tan θ
2 and | j, j > is a Jz eigenstate with eigenvalue j . Consider

the superposition state

|ψ >= N (| j;γ0 > +| j;−γ0 >) (15.112)
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with γ0 real. Calculate the probability distributions for Jx,Jy,Jz and show that
the Jy distribution exhibits interference effects. Give a geometrical interpreta-
tion of this result.

15.4 Consider the two mode squeezed vacuum state

|ψ >= (cosh r)−1
∞

∑
n=0

(tanh r)n |n >1 ⊗|n >2 (15.113)

and the mixed state with the same diagonal distribution

ρ = (cosh r)−2
∞

∑
n=0

(tanh r)2n|n >1< n|⊗ |n >2< n| (15.114)

Show that these states may be distinguished by the probability distributions
for the two mode quadrature phase operators X± = a±+ a†

± where

a± =
1√
2
(a1±a2) . (15.115)

15.5 Consider a two-level system with basis states {|0〉, |1〉} coupled impulsively
to the momentum of a free particle via the Hamiltonian

HI(t) = κ p̂σzδ (t− tr) (15.116)

with σz = |1〉〈1|−|0〉〈0|. Just prior to the readout at time tr the state of the par-
ticle is a Gaussian with the wave function ψ(p) = (2πΔ)−1/4 exp[−x2/(4Δ)].
Immediately after the coupling at time tr the position of the particle is mea-
sured with perfect accuracy and projected onto the position eigenstate |xr〉.
Show that the conditional state of the two level system immediately after the
readout is given by (15.70) with x = xr.

15.6 Show that the measurement operator

ϒ̂Δ (x) = (2πΔ)−1/4 exp

[
− (x−κσ̂z)2

4Δ

]
(15.117)

reduces to a projection operator in the limit σ → 0.
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Chapter 16
Quantum Information

16.1 Introduction

Quantum information theory is the study of communication and information pro-
cessing tasks using physical systems that obey the rules of quantum theory. Informa-
tion theory was largely the creation of Claude Shannon working at Bell laboratories
over 50 years ago. Shannon produced an elegant mathematical theory for informa-
tion encoding, transmission and decoding in the presence of noise. The work was
grounded in a deep intuitive knowledge of the nature of noise in classical electron-
ics and electromagnetism although it made little reference to the physical carrier
of the information or the physical source of the noise. In the early 1980s a number
of pioneers, including Feynman, Fredkin, Bennett, Landauer and Deutsch, began to
re-consider these issues in the light of quantum noise. We now know that quantum
mechanics provides powerful new ways to communicate and process information
that are impossible, or difficult, in a classical world. Many of these new ideas have
had an impact on quantum optics and some of the first experiments in this burgeon-
ing field involve quantum optical systems. In this chapter we will consider some
of these developments including quantum cryptography, quantum teleportation and
quantum computation.

In classical information theory, the elementary unit of communication and infor-
mation processing is the binary digit, or bit, which can take the mutually exclusive
values 0 or 1. All communication and information processing can be reduced to
operations on strings of binary digits. In 1946 Shannon [1] established a number
of theorems for such operations and founded the subject of information theory [2].
Somewhat paradoxically, the key for this development lay in asking how much in-
formation is gained when the result of a random binary choice is known. Consider,
for example, a fair coin toss. If we code a head as 1 and a tail as 0, it is clear that to
record the result of a single coin toss we require one binary digit. When the result
is known we have gained one bit of information. If we toss N coins there are 2N

possible outcomes, yet to record a single outcome requires only N bits. It would
appear from this that an intuitive definition for a numerical measure of information

307
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is the logarithm of the number of possible alternative ways a given outcome can be
realised. If all outcomes are equally likely, as in the case of a fair coin toss of N
coins, the probability of each outcome is 2−N . The information content of a the ith
outcome is then H = − log2 pi where pi = 2−N is the probability of the outcome.
The dependence of the information measure on the logarithm of the probability en-
sures that information is additive as our intuition with coin tosses would suggest.
In general all outcomes are not equally likely. In that case we are led to define the
average information of an outcome as H =−∑i pi log2 pi. We choose to define our
logarithms base two as this leads to a measure of information in bits, which appears
more natural in this context.

16.1.1 The Qubit

Quantum mechanics indicates that, at its most fundamental level, the physical world
is irreducibly random. Given complete knowledge of the state of a physical system
(that is a pure state) there is at least one measurement the results of which are com-
pletely random. The simplest example is provided by a two-state system such as a
spin-half particle, a polarised photon, or a two-level atom. An elementary optical
two-state system is a beam splitter, shown in Fig. 16.1. A single photon directed
towards a 50/50 beam splitter will be reflected or transmitted with equal probability
(we assume an ideal device that does not absorb the photon). If we place a perfect
photon detector in both output ports of the beam splitter we will get a count at one or
the other detector with equal probability. At first sight it would appear that a single
two-state system such as this is a perfect quantum coin toss, but the reality is more
subtle.

To understand why this is so consider the example depicted in Fig. 16.2 in which
we try to toss the quantum coin twice in succession by redirecting the photon to-
wards another identical beam splitter. In a real coin toss the outcome is no less

Fig. 16.1 A single photon
at a 50/50 beam splitter can
be reflected or transmitted
with equal probability. A
perfect photon detector in
both output ports of the beam
splitter, labeled U (upper) or
L (lower), will register a count
at one or the other detector
with equal probability

input light

U-detector

L-detector
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Fig. 16.2 Tossing a quantum
coin twice. After the first
beam splitter in Fig. 16.1, a
single photon is redirected,
using perfectly reflecting
mirrors, towards an identi-
cal beam splitter. The device
is now a Mach–Zehnder
interferometer and can be
adjusted, by moving a mirror
as indicated, so that the pho-
ton emerges with certainty
in the upper output mode.
The adjustment can be made
by small displacements on
one of the perfectly reflecting
mirrors

input light

U-detector

L-detector

uncertain than the first coin toss. Such is not the case for this “quantum coin toss”.
In Fig. 16.2 we illustrate a possible way to make the photon choose twice in suc-
cession whether to be reflected or transmitted, and immediately recognise the form
of a Mach–Zehnder interferometer. Clearly we can set up this device so that the
photon will be detected with certainty in say the upper photon detector. This is very
different from tossing two coins in succession.

The explanation of this phenomenon takes us to the heart of why quantum infor-
mation theory will necessarily be different from classical information theory. Imme-
diately after the first beam splitter the photon is in a quantum superposition of two
distinct spatial modes of the field;

|ψ〉= 1√
2
(|1〉U ⊗|0〉L + |0〉U ⊗|1〉L) (16.1)

where we have labelled the two output modes as up (U) or lower (L). If we place a
photon detector in both output modes it is easy to see that we will count a photon in
each mode with equal probability. However the state is not a truly random state. In
fact it is a pure state, the entropy of which is zero. The beam-splitter has unitarily
transformed the initial pure state |0〉U⊗|1〉L. If the system is caused to pass through
another beam splitter a further unitary transformation takes place which, for appro-
priate path lengths, will produce the state |1〉U ⊗ |0〉L at the output and the photon
will be detected with certainty in the upper detector.

We need to distinguish a true coin toss from a “quantum” coin toss. The key dis-
tinguishing feature is the ability of the quantum system to be prepared in a coherent
superposition of the two mutually exclusive alternatives. This is not possible for a
classical coin toss which is either heads or tails but not both. While it is true that the
result of an arbitrary measurement on a single two state system will give one bit of
information in general, the system state is not like a classical coin toss, as the sin-
gle photon example illustrates. To distinguish a true one bit classical system from a
quantum one bit system we will refer to the quantum case as a qubit. A qubit is then
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a quantum system which can yield at most one bit of information upon measure-
ment, but which can be in a coherent quantum superposition of the two mutually
exclusive outcomes prior to measurement. In the case of N qubits the system can
exist in a superposition of all 2N possible product states of each individual qubit. It
is this exponential rise in the number of states accessible to an N qubit system that
gives quantum information processing its power. We discuss below an example of
how even a single qubit can be harnessed to do things that a classical one bit system
never could; secure key distribution.

16.1.2 Entanglement

The key feature of quantum mechanics that lies behind quantum information theory
is quantum entanglement. Quantum entanglement refers to correlations between the
results of measurements made on distinct subsystems of a composite system that
cannot be explained in terms of standard statistical correlations between classical
properties inherent in each subsystem. An example is provided by the violation of
the Bell inequality for two distinct two-state quantum systems (see Chap. 13). If
the subsystems are time like separated, quantum entanglement implies non-locality.
Non-locality means that measurements on distinct subsystems, local measurements,
are incapable of determining the joint state of the composite system. While quantum
entanglement and non-locality are related they are not the same. It is possible to have
non-locality without entanglement [3].

In quantum optics the simplest source of entanglement is provided by the non-
degenerate squeezed vacuum state produced by spontaneous parametric down con-
version (see Sect. 5.2.1),

|E 〉= (1−λ2)1/2
∞

∑
n=0

λn|n〉a⊗|n〉b (16.2)

where λ = tanhr with r the squeezing parameter. Note that this state is a zero eigen-
state of the photon number difference operator, n̂a− n̂b, between the two modes.
The entanglement here results from a superposition of the infinite number of in-
distinguishable ways we can distribute equal numbers of photons in each mode.
The reduced state of each subsystem (modes a and b) is in fact a thermal state
(see Sect. 5.2.5). This is the maximum entropy state for a mode with a fixed av-
erage energy. Thus while the total state is a pure state with zero entropy, the state
of each subsystem is as uncertain as it can be given the constraint on the average
energy.

Measurements on the component sub-systems of entangled states are insufficient
to completely determine the joint state of the system. In some cases local measure-
ments may give no information at all about the joint state and the entropy of the
subsystem reduced states are maximal. Such states are called maximally entangled.
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An example is provided by the following eigenstates of total photon number,

|ψN〉=
1√

N + 1

N

∑
n=0

|n〉a⊗|N−n〉b (16.3)

Local measurements on either mode, say a, are described by the reduced density
operator

ρa = Trb(ρ) (16.4)

where Trb refers to the partial trace over mode b. In this case the resulting reduced
density operator for each mode is the identity matrix in N + 1 dimensions. The
entropy of such a state is

Sa,b =−Trρa,b lnρa,b = ln(N + 1) (16.5)

which, given the constraint on total photon number, is maximal. In general the en-
tropy of each subsystem satisfy an important inequality, the Araki–Lieb inequality,

|Sa−Sb| ≤ S ≤ Sa + Sb (16.6)

where S is the entropy of the state of the joint system. In the case of a pure entangled
state this implies that Sa = Sb.

Entangled states do not necessarily need to be pure states. Furthermore there
can be non-entangled states that still exhibit classical correlations between the sub-
systems. If an entangled state interacts with an environment entanglement can be
reduced to zero while classical correlations remain. An example is provided by a
two-mode squeezed vacuum state undergoing phase diffusion in each mode. The
steady state density operator describing such a system is

ρ = (1−λ2)
∞

∑
n=0

λ2n|n〉a〈n|⊗ |n〉b〈n| (16.7)

which still retains a perfect classical correlation between the photon numbers in
each mode. However as the state is a convex sum of states which factorise, the state
in (16.7) is not entangled and in fact is defined as separable.

It seems reasonable to suggest that between pure entangled states and totally sep-
arable mixed states there is a gradation of entanglement. To quantify this we require
a measure of entanglement, and a number of such measures for finite dimensional
Hilbert spaces have been proposed [4]. The situation for infinite dimensional Hilbert
spaces, which is the case for much of quantum optics, is complicated except for a
special class of states known as Gaussian states. Such states have a Gaussian Wigner
function. The two mode squeezed state is an example (see Sect. 5.2.4). Further dis-
cussion on mixed Gaussian entangled states is given in [5]

When a pure state, |ψ〉 interacts with an environment it undergoes decoher-
ence (see Chap. 15) and generally becomes a mixed state, ρ. We can then ask
for the probability of finding the initial state, ψ in the ensemble represented by ρ.
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This probability is given by
F = Tr(ρ|ψ〉〈ψ|) (16.8)

which is called the fidelity. Fidelity has a deeper significance in terms of the statis-
tical distinguishability of quantum states [6].

16.2 Quantum Key Distribution

For millennia, communicating parties have devised schemes whereby messages can
be authenticated (the signature) and secured from unauthorised access (cryptogra-
phy). Modern methods (symmetrical crypto-systems) for secure electronic commu-
nication involve the prior exchange of a random number which is called the key. If
the communicating parties share this number with each other and no one else, mes-
sages can be securely encrypted and decoded. The method however is vulnerable
to a third party acquiring access to the key. In this section we will describe how
quantum mechanics enables two communicating parties to arrive at a shared secure
key via Quantum Key Distribution (QKD).

The idea that quantum mechanics might enable more secure communication was
hinted at in the work of Wiesner [7] and made explicit in the pioneering work of
Bennett and Brassard [8], in which the first QKD protocol, BB84, was presented. It
uses a set of four qubit states to encode one bit. The first experimental demonstra-
tion of QKD was made by Bennett, Brassard and co-workers in 1989 [9]. The first
practical implementation over a kilometer of optical fibre was achieved by Gisin’s
group in Geneva [10]. The idea has since been elaborated by a number of authors
including Ekert [11] who in 1991 showed that EPR entangled states of pairs of pho-
tons could also be used for QKD. However here we will describe the minimal QKD
scheme of Bennettt, B92 [12], as this scheme is simpler than BB84 (it uses only two
non orthogonal states) and has been successfully implemented in optical fibres over
long distances and in free space communication. In practice however a two state
QKD scheme is not desirable as it is possible to distinguish two non orthogonal
states provided we accept inconclusive outcomes in some trials.

The key idea behind QKD is the Heisenberg uncertainty principle which ensures
that any attempt to measure a quantum state will change it, and thus eavesdropping
can in principle be detected. This is related to a powerful theorem in quantum in-
formation theory, the “no-cloning” theorem: an unknown quantum state cannot be
duplicated [13]. Thus experimental QKD offers important new insights into the na-
ture of quantum physics. Let us now follow a classical protocol to establish a shared
random key between two communicating parties, called Alice (A) and Bob (B).

Alice and Bob are assumed to have a means to generate completely random bi-
nary numbers. Alice generates a random binary number and sends it to Bob, and
Bob generates a random binary number and compares it to the binary number re-
ceived from Alice. If it is the same he tells Alice publicly that this is the case,
but does not reveal what the value actually was. If it was the same, Alice and Bob
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keep this binary number, otherwise they discard it. Alice and Bob then repeat the
procedure for another binary number and continue in this way until they share a
binary string that is a subset of the total binary string that Alice sent to Bob. If for
some reason Alice’s binary number fails to get to Bob in a particular run, it makes
no difference to the final shared binary string (although it does reduce the rate of
communication for the shared binary string). The big problem with this method is
that classically it is possible for an eavesdropper, Eve, to copy Alice’s transmitted
binary number without disturbing it. Then Eve can listen to the public channel and
hear Bob telling Alice that this number was the same as his binary number. QKD
avoids this problem by making it impossible for Eve to measure (or copy) an un-
known quantum state without also disturbing it in general. If Alice and Bob chose
carefully the quantum state encoding their binary numbers an eavesdropper can be
detected by Alice and Bob.

Alice and Bob will communicate with polarised single photon pulses (see Sect.
16.4.2 for further discussion). They first need to agree on how to physically im-
plement the encoding. Suppose Alice decides to transmit only vertically (V) and
+45o (+D) photons. She will send a V-photon when a previously generated ran-
dom binary number is a 0 and a +D-photon when the random binary number is a 1.

A : V ↔ 0; +D↔ 1 . (16.9)

Bob and Alice also agree that Bob can make a polarisation measurements of Alice’s
photon in only two directions; horizontally (H) or at −45o (−D). These measure-
ments project onto non-orthogonal polarisation states. Bob randomly decides which
of his two allowed measurements he will make on any photon he receives from
Alice. The choice of measurement is made by referring to a previously generated
random bit according to the code,

B : 0↔−D; 1↔ H . (16.10)

When Bob measures the polarisation he records the result as a yes (Y) or a no (N)
depending on whether the photon was indeed found to have that particular polarisa-
tion. Bob will never record a Y if his bit is different from Alice’s (crossed polarisers),
and he records a Y on 50% of runs in which their bits are the same. Thus Bob can
only get a Y if his bit is the same as Alice’s (although he may get a N in that case
as well). Finally Bob sends a copy of his results to Alice, over a public channel, but
he does not tell Alice what measurement he made on each bit. Now Alice and Bob
retain only those bits for which Bob’s result was “Y”. These bits are the shared key.

If Eve, an eavesdropper, makes a QND polarisation measurement of Alice’s
transmitted photons in an attempt to learn what was sent, she will introduce a 25%
error rate between Alice and Bob’s shared key. This occurs because her measure-
ment will project the transmitted state into the eigenstates corresponding to her
measurement result and this state may be different from that sent by Alice. Alice
and Bob can test for eavesdropping by agreeing to sacrifice part of their shared
key to check the error rate. If the error rate is 25% or higher they will suspect an
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eavesdropper and discard the entire shared key. In reality errors are inevitable, and
Alice and Bob will need to agree on an acceptable error threshold less than 25%.

This protocol has been demonstrated experimentally by the group of Hughes
at Los Alamos National Laboratory. The requirement that we use single photon
states to code the bits of information places considerable demands on the physical
resources required to implement B92. A considerable effort is being expended to
realise single photon pulsed sources. Given such a source we also need to be able to
reliably detect single photons, with a small dark count rate, and we need to propa-
gate single photon pulses over possibly large distances with as little loss as possible.
If the loss rate is too high very few counts will be available to Alice and Bob to
construct their shared key and thus the data transmission rate could be unaccept-
ably low. Finally, if we are to use standard optical fibres to transmit the photons,
polarisation encoding is difficult owing to the birefringence of optical fibres.

To overcome this last problem the Los Alamos experiment used an interferomet-
ric implementation of B92 [14]. We can use any two state system to represent a qubit
and thus any two state system can in principle be used for QKD. An example is pro-
vided by a single photon Mach-Zhender (M-Z) interferometer, see Fig. 16.3. The
M-Z interferometer couples two input modes to two output modes, labelled U (for
upper) and L (for lower) in Fig. 16.3. The device provides two possible paths for a
single photon input at say U to be transmitted to the output. If path lengths are equal
we can set up the device so that a photon input at U will be counted with certainty at
the L-detector. However we also have the freedom to insert phase shift devices into
either path and thus change the interference conditions. In particular Alice can insert
a phase shift φA into one end of the device co-located with her transmission while

L

single photon pulse

ALICE BOB

ΦB

ΦA

U

L

U

Fig. 16.3 A method to use phase shift coding for coherent pulses in a QKD protocol
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Bob can insert another phase shift φB co-located with his reception. Let us assume
Alice injects photons into the U input mode and that Bob counts photons only from
the L detector mode. The input state is |1〉U |0〉L. The beam splitters implement the
state transformations,

|1〉U |0〉L → 1√
2
(|1〉U |0〉L + |0〉U |1〉L) (16.11)

|0〉U |1〉L → 1√
2
(|0〉U |1〉L−|1〉U |0〉L) (16.12)

The output state is thus given by

|Ψ〉out =
1
2

(
eiφB − eiφA

)
|1〉U |0〉L +

1
2

(
eiφB + eiφA

)
|0〉U |1〉L (16.13)

The probability that a photon injected by Alice is detected by Bob is then

PD = cos2
(

φA−φB

2

)
(16.14)

Now if Alice and Bob use phase angles (φA,φB) = (0,3π/2) to encode 0 and
(φA,φB) = (π/2,π) to encode 1, they have an exact realisation of B92, where po-
lariser angels are replaced by path length differences.

To realise a M-Z interferometer using optical fibres for each of the paths is diffi-
cult if the arms extend over large distances. Small fluctuations in phase shifts along
each path would lead to a very unstable interferometer. In the Los Alamos experi-
ment this problem was overcome using a single optical fibre for both arms with a
unbalanced M-Z interferometer (a Franson-type interferometer) at either end, see
Fig. 16.4.

In this scheme there are two paths for a single photon at each end, a “long” path
and a “short” path. Thus the four possible histories of a photon can be conveniently
described as; short-short (SS), long-long (LL), short-long (SL) and long-short(LS).
As the last two histories are indistinguishable we expect to see interference be-
tween these two processes. When a single photon pulse passes though Alice’s M-Z
interferometer the output state is a superposition of two pulses delayed by a time T

loss loss

Alice Bob

φA φB

Fig. 16.4 A method to implement time multiplexed codes for QKD. From “Secure communica-
tions using quantum cryptography” [14]
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equal to the delay between the short and the long path. At the output of Bob’s M-Z
interferometer there will be three pulses, one leading ‘prompt’ pulse correspond-
ing to the history SS, one delayed pulse corresponding to LL and one central pulse
corresponding to the two interfering possibilities SL and LS. Of course not every
photon makes it to Bob’s output port: each M-Z interferometer has two output ports
and some photons exit in the “loss” ports in Fig. 16.4. As there is no interference in
LL and SS the photons arrive in these time windows with a probability of 1/16 for
50/50 beam splitters. However the probability of detecting a photon in the central
pulse is

PD =
1
4

cos2
(

φA−φB

2

)
(16.15)

Note that this is the same as the previous single M-Z scheme apart from the addi-
tional factor of 1/4. Thus we can implement the M-Z version of B92 provided we
are prepared to sacrifice detection events so that the data rate is at least reduced by
a factor of 4.

In the Los Alamos experiment the two unbalanced M-Z interferometers were
constructed using 50/50 fibre couplers. The long arm of the device corresponded
to a standard underground optical fibre link 24 km long. The total travel time over
the underground link is about 80 μs, with 10 DBE of attenuation due to the fibre’s
0.3-dB/km attenuation and four connections along the path. Photons emerge from
one of the output legs of Bob’s interferometer into a cooled InGaAs APD detector.
The photons at Alice’s end are generated by a 1.3 μm pulsed semiconductor laser. A
300-ps electrical pulse is applied to the laser, with a 10-kHz repetition rate. A laser
of course does not produce pulses with one and only one photon per pulse but rather
generates a coherent state with a Poisson distribution of photons per pulse. However
if we attenuate the output pulse so that on average there is only a singe photon we
can get a very close realisation of the B92 protocol. The possibility that a pulse con-
tains 2 or more photons is a potential loop hole for an eavesdropper to exploit, and
thus there is some motivation to consider developing a true single photon source for
this implementation. Each “single-photon” pulse is preceded by a bright reference
pulse, introduced to the lower input port of Alice’s interferometer, to provide arrival
time information to Bob. This bright pulse triggers a room-temperature detector in
the upper output port of Bob’s interferometer, which provides the “start” signal for
a time-interval analyser. In addition to the quantum channel (24 km of optical fibre)
connecting Alice and Bob there is also a public ethernet channel which allows Alice
and Bob to extract a shared key.

In Fig. 16.5 we show an example of photon arrival time spectra for four different
phase differences. Photon counts were accumulated for 60 s at each phase setting.
The 3-ns separation of the different paths is clearly visible, as is the 300-ps width
of the laser pulse. The unequal height of the “short-short” (left-most in each plot)
and “long-long” (right-most) peaks is due to attenuation at the phase shifters. The
average number of photons per laser pulse arriving in the central peak maximum
was n = 0.4. After accounting for background noise an underlying interferometric
visibility of 98.4±0.6% was determined for the central peak. This visibility is not as
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Fig. 16.5 Photon arrival time spectra for a QKD protocol discussed in the text. From “Secure
communications using quantum cryptography”, [14]

useful as the total probability of a count in the central time-window when the phase
difference is π, because this quantity determines the error rate of the B92 protocol.

The performance of an experimental QKD system is stated in terms of the num-
ber of bits per second of a shared secret key (the distilled bit rate Rdis) and the
distance between the communicating parties. It is usually easier to determine the
raw bit rate (Rraw). This is determined by actual losses in the quantum channel,
sources and detectors as well as possible intervention of an eavesdropper. From this
the error rate in the sifted key (obtained after Alice and Bob perform a round of
classical communication to reconcile their bases) is called the quantum bit error
rate (QBER). The QBER for the Los Alamos experiment was 1.6%. The rate of
key generation is necessarily lower than the laser pulse rate if attenuated coherent
states are used instead of single photon pulses as most pulses contain no photons
at all. Obviously a single photon source is desirable. We will return to this issue in
Sect. 16.4.2. Furthermore there is the intrinsic inefficiency in the protocol due to a
factor of 4 reduction (16.15). Along the way fibre losses and detector inefficiencies
diminish the rate still further.

Quantum key distribution systems are now functioning in many laboratories
around the world. A QKD system using optical fibre over 148.7 km was
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demonstrated by a Los Alamos/NIST collaboration using the BB84 protocol [15].
Commercial systems are available, including id Quantique based in Geneva, MagiQ
Technologies in New York and SmartQuantum in France. A number of commercial
and government installations are already in place. All current systems however do
not use single photon sources, but rather very weak laser pulses. These suffer from
a weakness: the number of pulse in each pulse is not fixed but can fluctuate. This
opens up the system to difficult but possible eavesdropper attack.

16.3 Quantum Teleportation

Quantum key distributions is the simplest quantum communication task in that it re-
quires only the ability to coherently manipulate the state of a single qubit. Ultimately
it relies on the Heisenberg uncertainty principle. Quantum teleportation is a commu-
nication task that relies on the quantum entanglement of two qubits. The objective of
quantum teleportation is to take an unknown quantum state of some physical degree
of freedom, which we will call the client (C), and using measurement and classi-
cal feed-forward control, to remotely prepare another physical degree of freedom,
the receiver(B), in the same state, without ever learning anything about the quan-
tum state thus transmitted. This is only possible if co-located with the client system
there is another physical system, the sender (A), which is entangled with the state
of the physical system at the receiver (B)(see Fig. 16.6).

Bennett et al. [16] first proposed this communication protocol in terms of sys-
tems with a two dimensional Hilbert space (qubits[17]). Inspired by a proposal of
Braunstein and Kimble[18], Furasawa et al. [19] demonstrated that the method can
also be applied to entangled systems with an infinite dimensional Hilbert space,
specifically for harmonic oscillator states. This is known as continuous variable
teleportation as it requires the ability to make measurements of observables with
a continuous spectrum.

The scheme of Braunstein and Kimble was itself based on a simpler, though less
practical, scheme proposed by Vaidman[20] . Vaidman showed that continuous vari-
able teleportation is possible using the EPR entangled state (see Sect. 13.1) of two
degrees of freedom. This state is the result of making a perfect quadrature phase
QND (quantum nondemolition, see Chap. 14) measurement between two optical
modes, A and B, to create the entanglement resource. To take this example further
see Exercise 16.1. The EPR state is not a physical state because quadrature phase
eigenstates are infinite energy states. However we can use arbitrary close approxi-
mations to these states in terms of a squeezed vacuum state, (16.16). This is essential
feature exploited in the scheme of Furasawa et al.

Suppose that at some prior time a two mode squeezed vacuum state is generated
and that one mode is available for local operations and measurements at the sender’s
location A by observer Alice, while the other mode is open to local operations and
measurements in the receiver’s location B, by observer Bob. Alice and Bob can
communicate via a classical communication channel. Thus Alice and Bob each have
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squeezed state 
source

ALICE

BOB

joint 
measurement

classical channel control
device

A B|ψ>

|ψ>

client state source

Fig. 16.6 A teleportation protocol. The sender, Alice, shares one mode A of a two-mode squeezed
state, and another mode, the client, the state of which is unknown to her. Alice makes a measure-
ment of the sum of the quadrature phase amplitudes of the client mode and mode A. The results
of the measurement are sent via a classical channel to the receiver, Bob, who conditional on the
information received, applies a unitary control to his share of the two-mode entangled state, mode
B. The output of Bob’s action is a mode now prepared in the same state as the client mode, but
neither Alice or Bob learn what this state is

access to one of the two entangled subsystems described by

|E 〉AB =
√

(1−λ 2)
∞

∑
n=0

λ n|n〉A⊗|n〉B (16.16)

This state is generated from the vacuum state by the Unitary transformation

U(r) = er(a†b†−ab) (16.17)

where λ = tanhr and where a,b refer to the mode accessible to Alice and the mode
accessible to Bob respectively (see figure 16.6).

The entanglement of this state can be viewed in two ways. Firstly as an en-
tanglement between quadrature phases in the two modes (EPR entanglement) and
secondly as an entanglement between number and phase in the two modes (see
exercise 2). We can easily show that this state approximates the entanglement of
an EPR state in the limit λ → 1 or r→ ∞. The quadrature phase entanglement is
easily seen by calculating the effect of the squeezing transformation Eq(16.17) in
the Heisenberg picture. We first define the quadrature phase operators for the two
modes
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X̂A = a + a† (16.18)

ŶA = −i(a−a†) (16.19)

X̂B = b + b† (16.20)

ŶB = −i(b−b†) (16.21)

Then

Var(X̂A− X̂B) = 2e−2r (16.22)

Var(ŶA + ŶB) = 2e−2r (16.23)

where Var(A) = 〈A2〉−〈A〉2 is the variance. Thus in the limit of r→∞ the state |E 〉
approaches a simultaneous eigenstates of X̂A− X̂B and ŶA + ŶB. This is the analogue
of the EPR state with position replaced by the real quadratures X̂ and the momentum
replaced by the imaginary quadratures, Ŷ .

Let us suppose the unknown state we wish to teleport, the client state, is written
as |ψ〉C. By this we mean that some party has prepared this mode in state |ψ〉C, but
this preparation procedure remains unknown to A and B. Perfect (projective) mea-
surements are made of the joint quadrature phase quantities, X̂C− X̂A and ŶC +ŶA on
the client mode and the Alice’s part of the entangled mode, A, with the results X ,Y
respectively. The conditional state resulting from this joint quadrature measurement
(see Exercise 16.2) is described by the projection onto the state |X ,Y 〉CA where

|X ,Y 〉CA = e−
i
2 X̂AŶC |X〉C⊗|Y 〉A (16.24)

The (unnormalised) conditional state of total system after the measurement is then
seen to be given by

|Ψ̃(X ,Y )〉out = CA〈X ,Y |ψ〉C|E 〉AB⊗|X ,Y〉CA (16.25)

The state of mode B at the receiver, denoted as Bob, is the pure state

|φ(X ,Y )(r)〉B = [P(X ,Y )]−1/2
CA〈X ,Y |ψ〉C⊗|E 〉AB (16.26)

with the wave function (in the X̂B representation),

φ(X ,Y )
B (x) =

∫ ∞

−∞
dx′e−

i
2 x′Y E (x,x′)ψ(X + x′) (16.27)

where ψ(x) = C〈x|ψ〉C is the wavefunction for the client state we seek to teleport.
The kernel is simply the wave function for the two mode squeezed state resource.

The state in (16.27) is clearly not the same as the state we sought to teleport.
However in the limit of infinite squeezing, r → ∞, we find that G (x1,x2;r) →
δ (x1 + x2) and the state of mode B approaches

|φXY (r)〉B→ e−
i
2 Y X̂B e

i
2 XŶB |ψ〉B (16.28)
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which, up to the expected unitary translations in phase-space, is the required
teleported state.

For finite value of the squeeze parameter, r, the state after Bob’s conditional
control is not an exact replica of the client state. We can quantify how the state
differs by computing the probability that the state in Bob’s mode, after displacement,
is the same as the state of the client mode. This probability is called the fidelity and
is given by

F = |〈ψ|e i
2 μX̂Be−

i
2 νŶB |φ(X ,Y )〉|2 (16.29)

with μ = gY,ν = gX which allows for some flexibility in the choice of displace-
ments in the non ideal case. The quantity g is called the gain. In the limit of infinite
squeezing we expect g→ 1.

Quite apart from the limitations on the fidelity that arise from finite squeezing,
other limitations arise in the real world. Noise and uncertainty can enter through im-
perfect measurements, though the classical communication channel, through degra-
dation of the entanglement due to uncontrollable interactions with the environment
and though imperfections in the local unitary transformations in the feed forward
correction stage. These problems all limit the extent to which mean that Bob’s state
matches the state of the client degree of freedom. For these reasons it is necessary
to validate the teleportation channel explicitly by using known client states. This
will require running a number of trials with different client states and repeated mea-
surements upon the output state at mode B. From trial to trial the state that leaves
the channel at mod B will fluctuate, which means we must describe the teleported
state as a mixed state, ρB, in general. For a fixed input client state, the probability of
reproducing it at the output is given by the fidelity

F = 〈ψ|ρB|ψ〉 (16.30)

If we use an ensemble of client states, an overall measure of performance in terms
of the average fidelity F̄ obtained by averaging the fidelity over the ensemble of
client states, |ψ〉, with some appropriate measure on the set of pure states. If the
client states are drawn from an ensemble of coherent states we can obtain an explicit
result. In the extreme case that A and B share no entanglement, F̄ = 1

2 ., which gives
a classical boundary for teleportation of a coherent state. A demonstrable quantum
teleportation channel would need to give an average fidelity greater than this.

The group of Kimble at Caltech[19] were the first to demonstrate a teleportation
channel using squeezed states. Similar experiments have been reported by the group
of di Martini in Rome [21] and Zeilinger in Innsbruck[22]. We will take a closer
look at the Caltech experiment to explain how some of the formal steps in the pre-
ceding analysis are done in the laboratory. This will also enable us to identify the
sources of imperfections, such as photon loss, and noise. A schematic diagram of
the experiment is given in Fig. 16.7.

In order to effect a joint measurement of the combined quadratures X̂C− X̂A,ŶC +
ŶA, the experiment first combined the client and sender field amplitudes on a 50/50
beam splitter, followed by direct homodyne measurements of the output fields after
the beam splitter. After the beam splitter we then make a homodyne measurement of
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Fig. 16.7 A schematic of the Caltech teleportation experiment. An unknown quantum state is
received from the client and mixed with one mode of a two mod entangled state at the sending
party, Alice (A). A joint quadrature phase measurement is made by A and the results sent to a
receiving party, Bob (B) though a classical channel. Given this information B then transforms the
component of the shared entangled state held at B, by conditional displacements, to complete the
protocol. In a checking step a state verification is undertaken by the client to determine the success
of the teleportation

X -quadrature on mode C and the Y -quadrature on mode A. In the case of homodyne
detection, the actual measurement records are two photo-currents (IX , IP). For unit
efficiency detectors, this is an optimal measurement of the corresponding quadra-
tures X̂C,ŶA. In reality however efficiency is not unity and some noise is added to
the measurement results. We shall return to this point below.
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The measured photo-currents are a classical stochastic processes and may be sent
to the receiver, B, over a standard communication channel. On receipt of this infor-
mation the receiver must apply the appropriate unitary operator, a displacement, to
complete the protocol. Displacement operators are quite easy to apply in quantum
optics. To displace a mode, say B, we first combine it with another mode, prepared
in a coherent state with large amplitude, α → ∞, on a beam splitter with very high
reflectivity, R→ 1, for mode B. If |φ〉B is the state of B, then after the combination
at the beam splitter the state of B is transformed by

|φ〉B→ D(β)|φ〉B (16.31)

where D(β) = exp(βb†−β∗b) is the unitary displacement operator, and

β = lim
R→1

lim
α→∞

α
√

1−R (16.32)

In terms of the quadrature operators for B the displacement operator can be written

D(x,y) = eiyX̂B+ixŶB (16.33)

with β = x + iy. A suitable choice of β will produce the required displacements to
complete the teleportation protocol. This was achieved by using the measured pho-
tocurrents to control the real and imaginary components of the displacement field
using electrically controlled modulators. As the measurement records, the photocur-
rents, are classical stochastic processes they can be scaled by a gain factor, g, to
produce the required β.

The experiment included an additional step to verify to what extent the state re-
ceived by Bob faithfully reproduced the stat of the client field. In this experiment the
state of the client was a coherent state. In essence another party, Victor, is verifying
the fidelity of the teleportation using homodyne detection to monitor the quadrature
variances of the teleported state.

The key feature that indicates success of the teleportation is a drop in the quadra-
ture noise seen by Victor when Bob applies the appropriate unitary operator to his
state. This is done by varying the gain g. If Bob simply does nothing to his state
(g = 0), then Victor simply gets one half of a squeezed state. Such a state has a
quadrature noise level well above the vacuum level of the coherent state. As Bob
varies his gain, Victor finds the quadrature noise level fall until, at optimal gain,
the teleportation is effected and the variance falls to the vacuum level of a coher-
ent state. In reality of course extra sources of noise introduced in the detectors and
control circuits limit the extent to which this can be achieved.

In a perfect system the fidelity should be peaked at unit gain. However photon
loss in the shared entanglement resource and detector inefficiencies reduce this. In
the experiment, the average fidelity at unit gain was found to be F = 0.58 ± 0.002.
As discussed previously, this indicates that entanglement is an essential part of the
protocol.
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16.4 Quantum Computation∗

In 1982 Richard Feynman [23] suggested there were certain problems that would
be difficult to perform on a computer running according to classical mechanics but
which would be easy to do on a computer running according to quantum principles.
The reason why this is so is easy to see. A quantum system consisting of say N
interacting spins requires a simulation using vectors of 2N dimensions in general.
This exponential growth of the basis size is what makes classical simulations of
complex quantum problems so difficult. On the other hand if we built a system
with N interacting spins and allowed it to evolve unitarily, no such difficulty would
be encountered. It would appear that a computer executing unitary evolution on a
system of two level systems could significantly outperform a classical computer set
to solve the equivalent problem.

In 1985 David Deutsch [24] showed in more detail what would be required for
a quantum computer and gave examples of problems that might be solved more
efficiently on such a machine when compared to a classical machine. The promise of
quantum computation suggested by Feynman and elaborated by Deutsch was made
very apparent in the factoring algorithm of Shor in 1994 [25]. Shor gave a quantum
algorithm by which a large integer could be factored into its prime components with
high probability, more efficiently than any known algorithm for a classical computer.
As the supposed difficulty of factoring large integers is used in modern encryption
schemes, Shor’s algorithm indicated that such schemes would be open to attack by
anyone with a quantum computer.

Quantum computers are as constrained as classical computers in the kinds of
functions they can evaluate (so called computable functions) however a quantum
computer can potentially solve a problem more efficiently than a classical com-
puter. The efficiency of an algorithm is related to how many computational steps are
required to solve the problem as the “size” of the problem increase. The size of a
problem can often be expressed by the number of bits in a single number, for exam-
ple in the case of the factoring problem, the size of the problem is just the number
of bits required to store the number to be factored. If the number of steps required
to implement an algorithm grows exponentially with the size of the problem, the al-
gorithm is not efficient. If however the number of steps grows only as a polynomial
power of the size of the problem, the algorithm is efficient. Shor’s algorithm is an
efficient factoring algorithm for a quantum computer, while all known algorithms
for factoring on a classical computer require an exponentially increasing number of
steps as the size of the integer to be factored increases.

How does a quantum computer achieve this enormous increase in efficiency? The
answer lies in the quantum superposition principle. Suppose we wish to evaluate a
function f on some binary input string x to produce a binary output string, f (x).
We can code the input and output binary string as the product state of N qubits. The
output qubits however are preset to zero. Now we set up a machine so that under

∗ This section first appeared in “Springer Handbook of Lasers and Optics” ed. Träger, (Springer,
New York, 2007)
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unitary quantum evolution the state transforms as

|x〉|0〉 → |x〉| f (x)〉 (16.34)

Why do we demand that the transformation be unitary? Consider what happens
when we prepare the input qubits in a uniform superposition of all possible input
states;

∑
x
|x〉|0〉 →∑

x
|x〉| f (x)〉 (16.35)

If the dynamics is unitary the linearity of quantum mechanics ensures that (16.34)
implies (16.35). It would appear that in a single run of the machine we have evalu-
ated all possible values of the function.

This is not quite as interesting as it seems. If we measure the output qubits we
will get one value at random. That does not seem very useful. To see why it is useful
to do this let us ask; when would we ever want to evaluate every value of a particular
function? The answer, is when we are not so much interested in a particular value
of the function as a property of the function. The power of quantum computation
arises in what we do next, after the transformation in (16.35). In the next step we
continue to unitarily process the output register to extract, in one go, a property of
the function, while simultaneously giving up information on the output of any par-
ticular evaluation. In all of this we emphasise the need to perform perfect unitary
transformations of the qubits. Moreover the unitary transformations necessarily en-
tangle many qubit degrees of freedom. A quantum computer must produce highly
entangled states of many qubits without suffering any decoherence. It is this require-
ment that makes a physical realisation of a quantum computer so difficult to achieve
as we shall see below.

How can we use the superposition state in (16.35) to determine properties of
functions? To see this consider a function f which maps the binary numbers {0,1}
to {0,1}. There must be four such functions, two of which are constant functions
with f (0) = f (1), and two have f (0) �= f (1), so called balanced functions. Suppose
now the problem involves determining if a function is balanced or constant. On a
classical computer to answer this we need to make two evaluations of the function,
f (0), f (1). We would then need to run the computer twice. However a quantum
computer can determine this property in only a single run.

Suppose we have two qubits. One qubit will be used to encode the input data
and the other qubit, the output qubit, will contain the value of the function after
the machine is run. The output qubit is initially set to 0. The machine might then
run according to (16.34). However there is a problem with this expression. If f is
a constant function we have two distinct input states unitarily transformed to the
same output state. Clearly this is not a reversible transformation and thus cannot
be implemented unitarily. The problem is easily fixed however by setting up the
machine to evolve the states according to

|x〉|y〉 → |x〉|y⊕ f (x)〉 (16.36)
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where the addition is defined modulo two and we have allowed all possible settings
of both qubits. The unitary transformation which realises this operation has been
called the f -controlled NOT gate [26]. The input qubit x is the control qubit while
the output qubit y is the target. If the value of f on the control qubit is one, the bit
on the target is flipped; thus the name. Every unitary transformation on qubits can
be realised as suitable networks of simple one and two qubit gates using primitive
gate operations.

The quantum algorithm that solves this problem is a version of a quantum algo-
rithm first proposed by Deutsch. It proceeds as follows. In the first step we prepare
the output qubit in the state |0〉− |1〉 (we ignore normalisation in what follows for
simplicity). This can be done using a single qubit rotation |1〉 → |0〉− |1〉. Such a
rotation is called a Hadamard transformation. In the second step the input qubit is
prepared in the 0 state and is then subjected to a Hadamard gate as well, which im-
mediately produces a superposition of the two possible inputs for the function f . In
the third step we couple the input and output qubit via the f -controlled NOT gate.
The transformation is

(|0〉+ |1〉)(|0〉− |1〉)→ ((−1) f (0)|0〉+(−1) f (1)|1〉)(|0〉− |1〉) (16.37)

In the last step we apply a Hadamrd gate to the input qubit so that

((−1) f (0)|0〉+(−1) f (1)|1〉)(|0〉−|1〉)→ (−1) f (0)| f (0)⊕ f (1)〉(|0〉−|1〉) (16.38)

Thus the input qubit is in state 0 if f is constant and is in state 1 if f is balanced and
measurement of the qubit will determine if the function is balanced or constant with
certainty in a single run of the machine.

There is a simple quantum optical realisation of this algorithm based on a Mach-
Zehnder interferometer, see Fig. 16.8. The interferometer couples two modes of
the field, labeled upper (U) and lower (L). A single photon in the mode-U encodes
logical 1 while a single photon in mode-L encodes logical 0. At the input a single
photon in mode-U is transformed by the first beam splitter into a superposition state
in which it is in either mode-1 or mode-0. If we encode our qubits so that a |1〉
corresponds to the photon in mode-1 and a |0〉 corresponds to a photon in mode-0,
the first beam splitter performs a Hadamard transformation. Now we insert into

Fig. 16.8 An optical realisa-
tion of the Deutsch algorithm
in terms of a Mach-Zehnder
interferometer. The phase
shifts are chosen according to
the values of a binary function
f as φ0 = f (0)π, φ1 = f (1)π

L = 0

single photon pulse

Φ0

Φ1

U = 1

L = 0

U = 1
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each arm a phase shift φi which can only be set at 0 or π phase shift. We encode
the value of the functions as φ0 = f (0)π, φ1 = f (1)π. Set the interferometer so
that in the absence of the phase shift the photon emerges with certainty at the upper
detector, which encodes a 1. The lower detector encodes a zero. It is then clear that if
f (0) = f (1) a single photon will emerge at the upper detector, while if f (0) �= f (1)
the photon will be detected at the lower detector, that is the result is a 0.

The previous example illustrates the key features of a quantum algorithm. Firstly
it involves unitary transformations of pure quantum states. Secondly we need
both single qubit and two qubit interactions to produce entangled states. These
were the Hadamard transformation (H-gate) and a controlled NOT transformation
(CNOT-gate). It turns out that suitable networks of an arbitrary single qubit rota-
tions, together with a controlled NOT gate, can perform any computation involving
arbitrarily many qubits. These features guide us in the search for a suitable physical
implementation of a quantum computer. The requirement of unitary is most severe.
In general small imperfections in an actual machine will not enable perfect unitary
evolution. The pure states are necessarily degraded by unwanted interactions with
extraneous degrees of freedom, the environment. The necessity for at least two qubit
interactions means we must necessarily seek interactions that entangle at least two
quantum systems. Fortunately even in the presence of nonunitary transformations
we can use quantum error correction methods to mitigate the deleterious effects of
environment induced errors.

16.4.1 Linear Optical Quantum Gates

In the interferometric implementation of Deutsch algorithm we used a simple phys-
ical qubit based on a single photon excitation of one of a pair of spatial modes.
This is know as a “dual rail” logic. The relationship between logical states and the
physical photon number state is

|0〉L = |1〉1⊗|0〉2 (16.39)

|1〉L = |0〉1⊗|1〉2 . (16.40)

The modes could be two input modes to a beam splitter distinguished by the different
directions of the wave vector, or they could be distinguished by polarisation. In
the case of a beam splitter a single qubit gate is easily implemented by the linear
transformation

ai(θ) = U(θ)†aiU(θ) (16.41)

with U(θ) = exp
[
θ(a1a†

2−a†
1a2)

]
. Thus

a1(θ) = cosθa1− sinθa2 (16.42)

a2(θ) = cosθa2 + sinθa1 (16.43)
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The description in the logical basis becomes,

|0〉L → cosθ1|0〉L− sinθ1|1〉L (16.44)

|1〉L → cosθ1|1〉L + sinθ1|0〉L (16.45)

While single qubit gates are readily implemented by linear optical devices such as
beam splitters, quarter wave plates, phase shifters etc., two qubit gates are difficult.
In order to implement the controlled phase gate (CSIGN) defined by

|x〉L|y〉L→UCP|x〉L|y〉L = (−1)x.y|x〉L|y〉L (16.46)

In a dual rail, single photon code, this can be implemented using a two mode Kerr
nonlinearity. A simple nonlinear optical model of a Kerr nonlinearity was discussed
in Chap. 5 in relation to optical bistability. The two mode generalisation is described
by the Hamiltonian

H = h̄χa†
1a1a†

2a2 (16.47)

At the level of single photons this Hamiltonian produces the transformation, |x〉|y〉→
e−ixyχt |x〉|y〉 and it is a simple matter to implement the CSIGN gate in the logical
basis for the dual rail single photon code.

There are at least two problems in pursuing this approach; (a) the difficulty of
realising number states in the laboratory, (b) the difficulty of producing one photon
phase shifts of the order of π. We will say more about the fist of these problems
below. The second difficulty is very considerable. Third order optical nonlinearities
are very small for a field with such a low intensity as a single photon. However
experimental advances may eventually overcome this.

A quite different approach to achieve large single photon conditional phase shifts
is based on the non-unitary transformation of a state that results when a measure-
ment is made. Consider the situation shown in Fig. 16.9. Two modes of an optical
field are coupled via a beam splitter. One mode is assumed to be in the vacuum
state (a) or a one photon state (b), while the other mode is arbitrary. A single pho-
ton counter is placed in the output port of mode-2. What is the conditional state of
mode-1 given a count of n photons?

Consider two modes, a1,a2, coupled with a beam splitter interaction, described
by the one parameter unitary transformation, given in (16.42 and 16.43) We now
assume that photons are counted on mode a2 and calculate the conditional state

Fig. 16.9 A conditional
state transformation condi-
tioned on photon counting
measurements

'0'ψ| >

ψ| >(0)| >0

'1'ψ| >

ψ| >(1)| >1

case a case b
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for mode a1 for two cases: no count and also for a single count at mode a2. The
conditional state of mode a1 is given by (unnormalised),

|ψ̃(i)〉1 = ϒ̂(i)|ψ〉1 (16.48)

where

ϒ̂(i) = 2〈i|U(θ)|i〉2 (16.49)

with i = 1,0. The probability to observe each event is given by

P(i) = 〈ψ|ϒ̂†(i)ϒ̂(i)|ψ〉1 (16.50)

which fixes the normalisation of the state,

|ψ(i)〉1 =
1√
P(i)
|ψ̃(i)〉1 (16.51)

In Exercise 16.5 we find that

ϒ̂(0) =
∞

∑
n=0

(cosθ−1)n

n!
(a†

1)
nan

1

ϒ̂(1) = cos ϒ̂(0)− sin2 θa†
1ϒ̂(0)a1

This can be written more succinctly using normal ordering,

ϒ̂(0) =: eln(cosθ) : (16.52)

In order to see how we can use these kind of transformations to effect a CSIGN
gate, consider the situation shown in Fig. 16.10. Three optical modes are mixed
on a sequence of three beam splitters with beam splitter parameters θi. The ancilla
modes, a1,a2 are restricted to be in the single photon states |1〉2, |0〉3 respectively.
We will assume that the signal mode, a0, is restricted to have at most two photons,
thus

|ψ〉= α|0〉0 + β|1〉0 + γ|2〉0 (16.53)

Fig. 16.10 A conditional
state transformation on three
optical modes, conditioned
on photon counting measure-
ments on the ancilla modes
a2,a3. The signal mode, a1 is
subjected to a π phase shift

|ψ> |ψ'>

|0>

|1>
n2  =  1

n3  =  0
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θ2
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This captures the fact that in the dual rail encoding a general two qubit state can have
at most two photons. The objective is to chose the beam splitter parameters so that
when the two detectors at the output of modes 2,3 detect 1,0 photons respectively
(that is detect no change in their occupation), the signal state is transformed as

|ψ〉 → |ψ′〉= α|0〉+ β|1〉− γ|2〉 (16.54)

with a probability that is independent of the input state ψ〉. This last condition is
essential as in a quantum computation, the input state to a general two qubit gate
is completely unknown. We will call this transformation the NS (for nonlinear sign
shift) gate. In Exercise 16.7 we find that this can be achieved using: θ1 = −θ3 =
22.5◦ and θ2 = 65.53◦. The probability of the conditioning event (n2 = 1,n3 = 0) is
1/4. Note that we can’t be sure in a given trial if the correct transformation will be
implemented. Such a gate is called a nondeterministic gate. However the key point
is that success is heralded by the results on the photon counters (assuming ideal
operation).

We can now proceed to a CSIGN gate in the dual rail basis. Consider the situation
depicted in Fig. 16.11. We first take two dual rail qubits encoding for |1〉L|1〉L. The
single photon components of each qubit are directed towards a 50/50 beam splitter
where they overlap perfectly in space and time. This is precisely the case of the
Hong-Ou-Mandel interference discussed in Exercise 3.4(c), and produces a state
of the form |0〉2|2〉3 + |2〉2|0〉3. We then insert an NS gate into each output arm of
the HOM interference. When the conditional gates in each arm work, which occurs
with probability 1/16, the state is multiplied by an overall minus sign. Finally we
direct these modes towards another HOM interference. The output state is thus seen
to be −|1〉L|1〉L. One easily checks the three other cases for the input logical states
to see that this device implements the CSIGN gate with a probability of 1/16 and
successful operation is heralded.

Clearly a sequence of nondeterministic gates is not going to be much use: the
probability of success after a few steps will be exponentially small. The key idea in
using nondeterministic gates for quantum computation is based on the idea of gate
teleportation of Gottesmann and Chuang [27]. We saw in Sect. 16.3 that in quantum
teleportation an unknown quantum state can be transferred from A to B provided
A and B first share an entangled state. Gottesmann and Chuang realised that it is
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Fig. 16.11 A conditional state transformation conditioned on photon counting measurements.
A CSIGN gate that works with probability of 1/16. It uses HOM interference and two NS gates
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possible to simultaneously teleport a two qubit quantum state and implement a two
qubit gate in the process by first applying the gate to the entangled state that A and
B share prior to teleportation.

We use a non deterministic NS gate to prepare the required entangled state, and
only complete the teleportation when the this stage is known to work. The telepor-
tation step itself is non deterministic but, as we see below, by using the appropriate
entangled resource the teleportation step can be made near deterministic. The near
deterministic teleportation protocol requires only photon counting and fast feed-
forward. We do not need to make measurements in a Bell basis.

A nondeterministic teleportation measurement is shown in Fig. 16.12. The client
state is a one photon state in mode-0 α|0〉0 + β|1〉0 and we prepare the entangled
ancilla state

|t1〉12 = |01〉12 + |10〉12 (16.55)

where mode-1 is held by the sender, A, and mode-2 is held by the receiver, B. For
simplicity we omit normalisation constants wherever possible. This an ancilla state
is easily generated from |01〉12 by means of a beam splitter.

If the total count is n0 + n1 = 0 or n0 + n1 = 2, an affective measurement
has been made on the client state and the teleportation has failed. However if
n0 + n1 = 1, which occurs with probability 0.5, teleportation succeeds with the two
possible conditional states being

α|0〉2 + β|1〉2 if n0 = 1,n1 = 0 (16.56)

α|0〉2−β|1〉2 if n0 = 0,n1 = 1 (16.57)

This procedure implements a partial Bell measurement and we will refer to it as a
nondeterministic teleportation protocol, T1/2. Note that teleportation failure is de-
tected and corresponds to a photon number measurement of the state of the client
qubit. Detected number measurements are a very special kind of error and can be
easily corrected by a suitable error correction protocol. For further details see [28]

Fig. 16.12 A partial teleportation system for single photons states using a linear optics
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The next step is to use T1/2 to effect a conditional sign flip csign1/4 which suc-
ceeds with probability 1/4. Note that to implement csign on two bosonic qubits in
modes 1,2 and 3,4 respectively, we can first teleport the first modes of each qubit
to two new modes (labelled 6 and 8) and then apply csign to the new modes. When
using T1/2, we may need to apply a sign correction. Since this commutes with csign,
there is nothing preventing us from applying csign to the prepared state before per-
forming the measurements. The implementation is shown in Fig. 16.13 and now
consists of first trying to prepare two copies of |t1〉 with csign already applied, and
then performing two partial Bell measurements. Given the prepared state, the prob-
ability of success is (1/2)2. The state can be prepared using csign1/16, which means
that the preparation has to be retried an average of 16 times before it is possible to
proceed.

To improve the probability of successful teleportation to 1−1/(n + 1), we gen-
eralise the initial entanglement by defining

|tn〉1...2n =
n

∑
j=0
|1〉 j|0〉n− j|0〉 j|1〉n− j . (16.58)

The notation |a〉 j means |a〉|a〉 . . ., j times. The modes are labelled from 1 to 2n,
left to right. Note that the state exists in the space of n bosonic qubits, where the kth
qubit is encoded in modes n + k and k (in this order).

To teleport the state α|0〉0 + α|1〉0 using |tn〉1...2n we first couple the client mode
to half of the ancilla modes by applying an n + 1 point Fourier transform on modes
0 to n. This is defined by the mode transformation
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Fig. 16.13 A CSIGN two qubit gate with teleportation to increase success probability to 1/4.
When using the basic teleportation protocol (T1), we may need to apply a sign correction. Since
this commutes with CSIGN, it is possible to apply CSIGN to the prepared state before performing
the measurements, reducing the implementation of CSIGN to a state-preparation (outlined) and
two teleportations. The two teleportation measurements each succeed with probability 1/2, giving
a net success probability of 1/4. The correction operations C1 consist of applying the phase shifter
when required by the measurement outcomes
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ak→ 1√
n + 1

n

∑
l=0

ωklal (16.59)

where ω = ei2π/(n+1) This transformation does not change the total photon number
and is implementable with passive linear optics. After applying the Fourier trans-
form, we measure the number of photons in each of the modes 0 to n. If the mea-
surement detects k bosons altogether, it is possible to show [28] that if 0 < k < n+1,
then the teleported state appears in mode n + k and only needs to be corrected by
applying a phase shift. The modes 2n− l are in state 1 for 0 ≤ l < (n− k) and can
be reused in future preparations requiring single bosons. The modes are in state 0
for n− k < l < n. If k = 0 or k = n + 1 an effective measurement of the client is
made, and the teleportation fails. The probability of these two events is 1/(n + 1),
regardless of the input. Note that again failure is detected and corresponds to mea-
surements in the basis |0〉, |1〉with the outcome known. Note that both the necessary
correction and the receiving mode are unknown until after the measurement.

The linear optics quantum computing (LOQC) model described above can be
drastically simplified by adopting the cluster state method of quantum computation
[29]. The cluster state model was developed by Raussendorf and Breigel [30] and is
quite different from the circuit models that we have been using. In cluster state QC,
an array of qubits is initially prepared in a special entangled state. The computa-
tion then proceeds by making a sequence of single qubit measurements. Each mea-
surement is made in a basis that depends on prior measurement outcomes. Nielsen
realised that the LOQC mode of [28] could be used to efficiently assemble the clus-
ter using the nondeterministic teleportation tn. As we saw the failure mode of this
gate constituted an accidental measurement of the qubit in the computational basis.
The key point is that such an error does not destroy the entire assembled cluster but
merely detaches one qubit from the cluster. This enables a protocol to be devised
that produces a cluster that grows on average. The LOQC cluster state method dra-
matically reduces the number of optical elements required to implement the original
LOQC scheme. Of course if large single photon Kerr nonlinearities were available,
the optical cluster state method could be made deterministic [31].

A number of LOQC protocols have been implemented in the laboratory. The first
experiment was performed by Pittmann and Franson [32]. This used entangled an-
cillas that are readily produced as photon pairs in a spontaneous parametric down
conversion process. A simplified version of the LOQC model was implemented by
O’Brien et al. [33], based on a proposal of Ralph et al. [34] for a CNOT gate shown
in Fig. 16.14. The simplification results by firstly setting the beam splitter parame-
ters θ1,θ3 to zero in the NS gate implementation and secondly only detecting photon
coincidences at the output. This gate performs all the operations of a CNOT gate but
requires only a two photon input. Detecting only coincidences means that the de-
vice must be configured so that correct operation leads to a coincidence detection
of both photons at the output. The gate is non deterministic but gate failures are
simply not detected at all. In essence, the control (C) and target (T) qubits act as
their own ancilla. When the control is in the logical one state, the control and tar-
get photons interfere non-classically at the central 1/3 beam splitter which causes
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Fig. 16.14 A simplified
CNOT gate that gives cor-
rect operation only when both
input photons are detected
coincidentally at the output
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a π phase-shift in the upper arm of the central interferometer and the target state
qubit is flipped. The qubit value of the control is unchanged. Successful operation
is heralded by coincidence detection of both photons and success will occur with
probability 1/9.

In the UQ experiment the two modes of each qubit are distinguished by orthogo-
nal polarisations. This may be converted to spatial mode encoding by using polaris-
ing beam splitters and a half wave plate, as shown in Fig. 16.15. The key advantage
in using a gate based on two photon coincidence detection is that spontaneous para-
metric down conversion (SPDC) may be used in place of true single photon sources.
An SPDC produces a photon pair in two distinct spatio-temporal modes at random
times. There is a small probability of producing more than two photons, but this can
be neglected.

The truth table for a CNOT operation was experimentally determined by prepar-
ing each of the four possible input states to the gate, CT 〉 = |00〉, |11〉, |10〉, |01〉.
A comparison of the experimental results and the ideal CNOT gate are shown in
Fig. 16.14. A single classical interference event is required when the control is in

State
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QWP HWP SPCM

“1/3”
(62.5°)

Automated quantum
state tomography
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Fig. 16.15 The optical design schematic of the polarisation encoding implementation of the exper-
iment of O’Brien et al., PBS: polarising beam splitter, QWP: quarter wave plate, HWP: half wave
plate, SPCM: single photon counting module and X: beam dump. Reproduced, with permission,
from Nature, 426, 264 (2003)
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state |0〉L and experimentally the correct output is obtained in roughly 95% of cases.
In the case of the control in state |1〉L, correct operation is obtained in only 75% of
cases as this situation requires a non classical interference event for which very
careful mode matching is required.

While this provides good evidence the gate is working the key test of a quantum
CNOT gate is that it produce maximally entangled states when the control is in a su-
perposition of the two logical states. For example if the control is in state |0〉L−|1〉L,
while the target is in 1〉L, the two-qubit output state is |ψ−〉= |01〉L−|10〉L (where
|xy〉L = |x〉L⊗ |y〉L, with the first factor the control qubit and the second factor the
target). In testing the truth table, the output logical states were measured in the log-
ical basis. Such a “computational basis” measurement of course will not reveal the
classical correlation imposed by the truth table but not quantum coherence. To see
the quantum coherence implicit in the entangled state we need to measure in a basis
other than the computational basis. In the experiment this was done by measuring
the coincidence count rate while using a half wave plate set to pass control photons
in either of the states |0〉L or state |0〉L + |1〉L. The experimental results are show
in Fig. 16.16. The visibilities in the two curves are greater than 90% which is the
signature of entanglement in the output state.

An even better diagnostic of the gate operation is provided by state tomography,
a reconstruction of the full density matrix of the output state [35], when the output
is entangled. State tomography requires sampling the statistics for the measurement
outcomes of 16 different two qubit projections. Given these statistics data inversion
can be devised to reconstruct the density matrix for the output state. Given the den-
sity matrix, we can then compute its overlap, or fidelity, with respect to the pure
ideal entangled state |ψ−〉 that the ideal gate would produce. In the case of |ψ−〉
the fidelity obtained in the experiment was 0.87± 0.08. This is sufficiently high
that such a state were it not destroyed in the detection process, would violate a Bell
inequality test.

More recent experiments have improved on these early experiments. An NS gate
close to the original proposal, was implemented in the Zeilinger group, using a po-
larisation encoding and the four photon state emitted by spontaneous parametric
down conversion [36]. As in the UQ experiment, a coincidence detection configura-
tion was used to signal correct operation of the gate. The experimentally observed

Fig. 16.16 Conditional
coincidence rtes for non-
orthogonal measurement
bases. The control analyser
was set to pass |0〉L + |1〉L
(circles) and |0〉L (triangles)
when the input to the control
is (|0〉L−|1〉L) and the input
to the target is |1〉L. Repro-
duced, with permission, from
Nature, 426, 264 (1003)
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conditional phase shift was 1.05±0.06π. Future progress on linear optical quantum
computing schemes will most likely be based on cluster state implementations. A
four photon cluster state implementation was recently implemented by the Zeilinger
group [37].

16.4.2 Single Photon Sources

As we have seen both QKD and LOQC motivate the development of single photon
sources. Single photon sources enable QKD to escape beam splitter attacks that are
possible with weak coherent pulses. In order to progress to scaleable architectures,
LOQC will certainly require the development of good single photons sources and
highly efficient single photon detectors that can in fact discriminate between 0,1
and 2 photons. Fortunately steady progress is being made on both technologies. The
requirements on single photon sources are much more demanding than those for
single photon sources in QKD and we now briefly discuss some of these.

What we need is an optical pulse source in which each pulse contains one and
only one photon. Clearly such a source is going to produce photon antibunching
and the g(2)(τ) (see Sect. 3.6) is clearly a key diagnostic for such a source. However
a more stringent requirement is the ability of such a source to produce a strong
Hong-Ou-Mandle interference dip. (See Exercise 3.4(c)).

In order to define single photon states, let us begin by defining the positive fre-
quency field component as,

a(t) =
∞

∑
n=1

ane−int (16.60)

The allowed wave vectors for plane wave modes in a box of length L, form a de-
numerable set given by kn = nπ

L with corresponding frequencies ωn = ckn. If we
measure time in units of πL/c, the allowed frequencies may simply be denoted by
an integer ωn = n = 1,2, . . .. The Bose annihilation and creation operators obey the
usual commutation relations. Following the standard theory of photo-detection (see
Sect. 3.10) the probability per unit time for detecting a single photon is given by
p1(t) = γn(t) where n(t) = 〈a†(t)a(t)〉 and the parameter γ characterises the detec-
tor. A single-photon state may be then defined as

|1; f 〉=
∞

∑
m=1

fma†
m|0〉 (16.61)

where |0〉= ∏m |0〉m is the multimode global vacuum state, and we require that the
single photon amplitude, fm satisfies

∞

∑
m=0

| fm|2 = 1 (16.62)
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The counting probability is then determined by

n(t) =

∣∣∣∣∣
∞

∑
k=1

fke−ikt

∣∣∣∣∣
2

(16.63)

This function is clearly periodic with a period 2π. As the spectrum is bounded from
below by n = 1, it is not possible to choose the amplitudes fn so that the functions
n(t) have arbitrarily narrow support on t ∈ [0,2π).

While a field for which exactly one photon is counted in one counting interval,
and zero in all others, is no doubt possible, it does not correspond to a more physical
situation in which a source is periodically producing pulses with exactly one pho-
tons per pulse. To define such a field state we now introduce time-bin operators. For
simplicity we assume that only field modes n ≤ N are excited and all others are in
the vacuum state. It would be more physical to assume only field modes are excited
in some band, Ω−B ≤ n ≤ Ω + B. Here Ω is the carrier frequency and 2B is the
bandwidth. However this adds very little to the discussion.
Define the operators

ãν =
1√
N

N

∑
m=1

e−iτmν am (16.64)

where τ = 2π
N This can be inverted to give

am =
1√
N

N

∑
ν=1

eiτmν ãν (16.65)

The temporal evolution of the positive frequency components of the field modes
then follows from (16.60)

a(t) =
N

∑
μ=1

gμ(t)ãμ (16.66)

where

gμ(t) =
1√
N

[
1− ei(ντ−t)

]−1
(16.67)

The time-bin expansion functions, gμ(t) are a function of ντ− t alone and are thus
simple translations of the functions at t = 0. The form of (16.66) is a special case
of a more sophisticated way to define time-bin modes. If we were to regard a(t)
as a classical signal then the decomposition in (16.66) could be generalised as a
wavelet transform where the integer μ labels the translation index for the wavelet
functions. In that case the functions gμ(t) could be made rather less singular. In
an experimental context however the form of the functions gμ(t) depends upon the
details of the generation process.

The linear relationship between the plane wave modes am and the time bin modes
ãν is realised by a unitary transformation that does not change particle number, so
the vacuum state for the time-bin modes is the same as the vacuum state for the
global plane wave modes. We can then define a one-photon time-bin state as
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˜|1〉ν = ã†
ν |0〉 (16.68)

The mean photon number for this state is,

n(t) = |gν(t)|2 (16.69)

This function is periodic on t ∈ [0,2π) and corresponds to a pulse localised in time
at t = ντ. Thus the integer ν labels the temporal coordinate of the single photon
pulse.

We are now in a position to define an N-photon state with one photon per pulse. In
addition to the mean photon number, n(t) we can now compute two-time correlation
functions such as the second order correlation function, G(2)(τ) defined by

G(2)(T ) = 〈a†(t)a†(t + T)a(t + T)a(t)〉 (16.70)

The simplest example for N = 2 is

|1μ ,1ν〉= ã†
μ ã†

ν |0〉 μ �= ν (16.71)

The corresponding mean photon number is

n(t) = |gμ(t)|2 + |gν(t)|2 (16.72)

as would be expected. The two-time correlation function is,

G(2)(τ) = |gμ(t)gν(t + T)+ gν(t)gμ(t + T )|2 (16.73)

Clearly this has a zero at T = 0 reflecting the fact that the probability to detect a sin-
gle photon immediately after a single photon detection is zero, as the two pulses are
separated in time by |μ−ν|. This is known as anti-bunching and is the first essen-
tial diagnostic for a sequence of single photon pulses with one and only one photon
per pulse. When T = |μ − ν|τ however there is a peak in the two-time correlation
function as expected.

An example of such a single photon source producing a second order two-time
correlation function of this kind was implemented by the group of Yamamoto [38].
The source was based on spontaneous emission from exciton recombination from
a single InAs quantum dot in a micropillar cavity using distributed Bragg reflect-
ing mirrors. The devices operate at low temperature (3− 7 K) and are pumped
by a pulsed TiSi laser with 3 ps pulses every 13 ns. Three quantum dots were re-
ported producing light with wavelengths 931,932 and 937 nm. In Fig. 16.17 we
show the experimental results for the second order two time correlation function
using a Hanbury-Brown and Twiss configuration.

We now consider an interferometer with single photon input states. The most rel-
evant example for LOQC protocols is the Hong-Ou-Mandel (HOM) interferometer.
This example has been considered by Rohde and Ralph [39]. In this case two fields,
distinguished by momentum or polarisation are coupled by a linear optical device
(referred to for simplicity as a beam-splitter). After the interaction, each field is
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Fig. 16.17 The photon correlation histogram for emission form a single exciton quantum dot.
The results were obtained using a Hanbury-Brown and Twiss experiment. The emission from the
quantum dot was split into two paths via a beam splitter and each path directed towards a photon
detector. The number of events in which a photon was detected on one detector at time t1 and on
the other detector at time t2 = t1 + τ. The suppression of the peak at zero delay is characteristic of
a single photon pulse source. (From [38]) reproduced with permission from Nature

directed onto a photon counter, and the probability for a coincidence count is deter-
mined. We label the two sets of modes by the latin symbols a,b so for example the
positive frequency parts of each field are simply a(t),b(t). The coupling between
the modes is described by a scattering matrix connecting the input and output plane
waves

aout
n =

√
ηan +

√
1−ηbn (16.74)

bout
n =

√
ηbn−

√
1−ηan (16.75)

where 0≤ η≤ 1. This is realised by a unitary transformation, U , for example, aout
n =

U†anU . The total photon number at the input is N(t) = 〈a†(t)a(t)〉+ 〈b†(t)b(t)〉.
It is easy to see that this is unchanged by the beam-splitter transformation. The
probability, per unit time, for there to be a coincident detection of a single photon at
each output beam is easily seen to be proportional to

C = 〈a†(t)b†(t)b(t)a(t)〉 (16.76)

The overline represents a time average over a detector response time that is long
compared to the period of the field carrier frequencies. In this example we only
need consider the case of one photon in each of the two distinguished modes, so we
take the input state to be

|1〉a⊗|1〉b =
∞

∑
m,n=1

αnβma†
nb†

m|0〉 (16.77)

where αn,βn refer to the excitation probability amplitudes for modes an,bn re-
spectively. This state is transformed by the unitary transformation, U , to give
|ψ〉out = U |1〉a⊗ |1〉b. In the case of a 50/50 beam splitter, for which η = 0.5, this
is given as
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|ψ〉out =
∞

∑
n,m=1

αnβmUa†
nb†

m

=
1
2

∞

∑
n,m=1

αnβm(a†
n + b†

n)(b
†
m−a†

m)|0〉

=
1
2

∞

∑
n,m=1

αnβm[|1〉an |1〉bm −|1〉an|1〉am |0〉b

+|1〉bn |1〉bm |0〉a−|1〉bn |1〉am ]

Note that the second and third terms in this sum have no photons in modes b and a
respectively. We then have that

C =
1
2
− 1

2

∞

∑
n,m=1

αnα∗mβmβ∗n (16.78)

If the excitation probability amplitudes at each frequency are identical, αn = βn
this quantity is zero. In other words only if the two-single photon wave packets are
identical do we see a complete cancellation of the coincidence probability. This is
the second essential diagnostic for a single photon source. Of course in an exper-
iment complete cancellation is unlikely. The extent to which the coincidence rate
approaches zero is a measure of the quality of a single photon source as far as
LOQC is concerned. Whether or not this is the case depends on the nature of the
single photon source.

In Fig. 16.18 we show the results of a HOM interference experiment using the
exciton quantum dot source of Yamamoto [38].

Currently the two schemes used to realise single photon sources are: I conditional
spontaneous parametric down conversion, II cavity-QED Raman schemes. As dis-
cussed by Rohde and Ralph, type-I corresponds to a Gaussian distribution of αn as
a function of n. The second scheme, type-II, leads to a temporal pulse structure that
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Fig. 16.18 The coincidence count probability for two photons incident on a beam splitter as a func-
tion of the time delay in arrival times of the photons at the beam splitter for the exciton quantum
dot source of Santori et al. [38]. Reproduced with permission from Nature
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is the convolution of the excitation pulse shape and the Lorentzian line shape of a
cavity. If the cavity decay time is the longest time in the dynamics, the distribution
αn takes a Lorentzian form.

As an example of the experimental constraints on the generation of single photon
states we now review an example of a cavity-QED Raman scheme implemented by
Keller et al. [40]. Photon anti-bunching from resonance fluorescence was discussed
in Sect. 10.3. If an atom decays spontaneously from an excited to a ground state,
a single photon is emitted and a second photon cannot be emitted until the atom is
re-excited. Unfortunately the photon is emitted into a dipole radiation pattern over a
complete solid angle. Clearly we need to engineer the electromagnetic environment
with mirrors, dielectrics, etc, to be sure a preferred mode for emission. However
single photon sources based on spontaneous emission are necessarily compromised
by the random nature of spontaneous emission. The decay process is a conditional
Poison process. This means that after a fast excitation pulse there is a small random
time delay in the emission of the photon. This leads to time jitter in the single photon
pulse period. A similar situation prevails in the case of single exciton sources [38],
where spontaneous recombination leads to time jitter for the same reason. Clearly
what we need is a stimulated emission process not a spontaneous emission process.
A number of schemes based on stimulated Raman emission into a cavity mode have
been proposed to this end [40, 41, 42].

Consider a three-level atomic system in Fig. 16.19. The ground state is coupled
to the excited state via a two-photon Raman process mediated by a well detuned
third level. In this experiment a calcium ion ( 40Ca+) was trapped in a cavity via an
rf ion trap. The cavity field is nearly resonant with the 42P1/2→ 32D3/2 transition.
Initially there is no photon in the cavity. An external laser is directed onto the ion
and is nearly resonant with the 42P1/2→ 42P1/2 transition. When this laser is on, the
atom can be excited to the 32D3/2 level by absorbing one pump photon and emitting
one photon into the cavity. This is a stimulated Raman process and thus time of
emission of the photon into the cavity is completely controlled by the temporal
structure of the pump pulse. The photon in the cavity then decays through the end
mirror, again as a Poisson process this time at a rate given by the cavity decay rate.
This can be made very fast.

In principle one can now calculate the probability per unit time to detect a single
photon emitted from the cavity. If we assume every photon emitted is detected, this

Fig. 16.19 A possible three-
level atomic system for a
two-photon Raman single
photon source. The pump
beam is a strong classical
coherent pulse. The cavity
field is an intracavity field
mode initially prepared in a
vacuum state

pump

42P1/2

32D3/2

42S1/2

cavity
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probability is simply p1(t) = κ〈a†(t)a(t)〉 where κ is the cavity decay rate and a,a†

are the annihilation and creation operators for the intracavity field and

〈a†(t)a(t)〉= tr(ρ(t)a†a) (16.79)

where ρ(t) is the total density operator for ion-plus-cavity-field system. This may
be obtained by solving a master equation describing the interaction of the electronic
states of the ion and the two fields, one of which is the time dependent pump. Of
course for a general time-dependent pump pulse-shape this can only be done nu-
merically. Indeed by carefully controlling the pump pulse shape considerable con-
trol over the temporal structure of the single photon detection probability may be
achieved. In the experiment of Keller et al. [40] the length of the pump pulse was
controlled to optimise the single photon output rate. The efficiency of emission was
found to be about 8%, that is to say, 92% of pump pulses did not lead to a single-
photon detection event. This was in accordance with the theoretical simulations.
These photons are probably lost through the sides of the cavity. It is important to
note that this kind of loss does not effect the temporal mode structure of the emitted
(and detected) photons.

In a similar way we can compute the second order correlation function via

G(2)(T ) = κ2tr(a†aeL T (aρ(t)a†) (16.80)

where eL T is a formal specification of the solution to the master equation for a time
T after the “initial” conditional state aρ(t)a†. Once again, due to the non stationary
nature of the problem, this must be computed numerically. However if the pump
pulse duration is very short compared to the cavity decay time and further the cavity
decay time is the fastest decay constant in the system, the probability amplitude to
excite a single photon in a frequency at frequency ω is very close to Lorentzian. The
experiment of Keller et al. [40] revealed a clear suppression of the peak at T = 0
in the (normalised) correlation function g(2)(T ), thus passing the first test of a good
single photon source.

A very different approach to single photon sources is based on the spontaneous
parametric down conversion using a crystal with a significant second order optical
non linearity. In these systems, a pair of photons is produced simultaneously, but at
random times. However if we detect one photon of the pair in a given time window,
we know the temporal coordinates of the other photon. A detailed study of the mode
structure of the conditional photon pulse has been undertaken by Walmsley and co-
workers [43]. To a very good approximation the probability amplitude functions,
αω, are Gaussian with variance depending ultimately on the filters used in the con-
ditioning detection step. These sources have been the sources of choice for the early
implementations of LOQC. However the random time of pair production means that
the single photons are heralded but not produced on-demand. An ingenious scheme
to overcome this limitation is being pursued by the NIST group of Migdall [44]. In
their scheme a large number of conditional sources are multiplexed, together with
fast electro-optical switching, so that at some repetition rate and detection band-
width, there is near determinant sequence of singe photon detection events.
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Exercises

16.1 Consider the following EPR entangled state of two modes A and B,

|X ,Y 〉AB = e−
i
2 ŶAX̂B |X〉A⊗|Y〉B (16.81)

where the states appearing on the left hand side of this equation are the
quadrature phase eigenstates. Verify that this state is a simultaneous eigen-
state of X̂A− X̂B and ŶA + ŶB with respective eigenvalues, X ,Y .

16.2 The two-mode squeezed vacuum state, (16.16), is also entangled with respect
to the correlation specified by the statement: an equal number of photons in
each mode. However it is not a perfectly entangled state, which would require
the (unphysical) case of a uniform distribution over correlated states. Show
that the state is an eigenstate of the photon number difference and the phase
sum. To show this compute the canonical joint phase distribution P(φA,φB),
for the two modes using the projection operator valued measure (see Sect.
2.8). Show that as λ→ 1 this distribution becomes very sharply peaked at
φA = −φB. Thus the photon number in each mode are perfectly correlated
while the phase in each mode is highly anti correlated.

16.3 Joint quadrature phase measurement of X̂C− X̂A and ŶC +ŶA are made on two
modes, A and C, with the results X ,Y respectively. Show that the conditional
state resulting from this joint quadrature measurement is described by the
projection onto the state |X ,Y 〉CA where

|X ,Y 〉CA = e−
i
2 X̂AŶC |X〉C⊗|Y 〉A (16.82)

16.4 In the protocol for teleportation based on the state in Exercise 16.1, let the
total input state for the teleportation protocol be

|ψ〉in = |ψ〉C⊗|X0,Y0〉AB (16.83)

Joint quadrature phase measurements of X̂C − X̂A and ŶC + ŶA are made on
the client and sender modes C and A, yielding two real numbers, X ,Y respec-
tively. Show that the conditional state of mode B after the measurement on
sender and the client, in the special case of X0 = Y0 = 0, is then given by

|φ(X ,Y )〉B = e
i
2 XY e

i
2 XŶB e−

i
2 Y X̂B |ψ〉B (16.84)

16.5 Consider the beam splitter unitary transformation U = eθ(a†
2a1−a2a†

1). Show
that

2〈0|U(θ)|0〉2 =
∞

∑
n=0

(cosθ−1)n

n!
(a†

1)
nan

1

2〈1|U(θ)|1〉2 = cos ϒ̂(0)− sin2 θa†
1ϒ̂(0)a1
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16.6 A linear optical device acting on N modes may be described by a unitary
transformation of the form

U(H) = exp[−i�a†H�a] (16.85)

where

�a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

aN

aN
...

aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.86)

and H is a hermitian matrix. Show that this transformation leaves the total
photon number invariant,

U†(H)�a† ·�aU(H) =�a† ·�a (16.87)

and induces a linear unitary transformation on the vector�a as

U†(H)�aU(H) = S(H)�a (16.88)

16.7 Consider the three mode optical device shown in Fig. 16.10. Mode a1 is the
signal mode prepared in an arbitrary two photon state |ψ〉. Modes a2,a3 are
ancilla modes prepared in the photon number states |1〉2 and |0〉3, respec-
tively. Using the notation of Exercise 16.6, let the S(H) be the orthogonal
matrix with matrix elements si j. Show that the (unormalised) conditional state
of the signal mode, conditioned on counting one photon on mode a2 and no
photons in mode a3 is given by |upsi′〉 = Ê|ψ〉 with Ê = s22Â + s12s21a†

1Âa1

where Â = ∑∞
n=0

(s11−1)n

n! (a†
1)

nan
1. Verify that, for the choice given in Fig.

16.10, this implements a conditional sign shift gate with probability of 0.25 .
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Chapter 17
Ion Traps

17.1 Introduction

Ion trap technology currently leads the way in the effort to gain complete control of
quantum coherence in isolated systems. The seminal paper of Cirac and Zoller thrust
the technology to the forefront of the quantum processing agenda in a seminal paper
in 1995 [1]. Beginning over 30 years ago, experimentalists began trapping clouds of
atomic ions in order to achieve higher spectroscopic resolution [2]. The heritage of
this effort is the current ability to define time standards using ion trap clocks. Future
developments will depend on the ability to make smaller trap arrays for quantum
computing applications.

Ion trap technology also enables quantum limited measurements of the electronic
and vibrational states of a single trapped ion using the method of cycling fluorescent
transitions. This ability led to a complete reappraisal of how quantum mechanics of
single systems, subject to continuous observation, should be interpreted [3] enabling
an explicit physical demonstration of the concept of a quantum trajectory discussed
in Chap. 6. It is possible to trap and cool a single ion close to its vibrational ground
state [4], carefully prepare complex superpositions ofenergy eigenstates through opti-
cal excitation and then monitor thesubsequent dynamicswith extaordinary sensitivity.

17.2 Trapping and Cooling

Laplace’s equation indicates that it is not possible to trap a charged particle in three
dimensions with a static potential: there is always one unstable (untrapped) direction
in an electrostatic potential. We must resort to time periodic potentials. In Fig. 17.1
we show a possible configuration of electrodes.

The time dependent potential can be written

V (x,y,z,t) =
V̄
2

(kxx2 + kyy2 + kzz
2)+

1
2

V cos(ωr f t)(k′xx2 + k′yy2) (17.1)
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Fig. 17.1 A schematic representation of a linear radio frequency ion trap (after [5])

where ωr f is the frequency of the time dependent potential. Laplace’s equation im-
plies, kx + ky + kz = 0, k′x + k′y = 0. If we assume [5]

ax =
4Z|e|V̄ kx

mω2
r f

<< 1

qx =
2Z|e|Vk′x

mω2
r f

<< 1

then the motion in the x-direction is approximately harmonic, as is motion in the
y-direction. Given isotropy in the x−y plane, so that kx = ky, k′x = k′y and the motion
is harmonic with the secular frequency

ν =
(
ax + q2

x/2
)1/2 ωr f /2 (17.2)

A small amplitude oscillatory motion at frequency ωr f is superimposed on the secu-
lar motion, called the micromotion, which we neglect. In an experiment with 9Be+,
the axial frequency was about 3 MHz while the transverse frequency was about
8 MHz. The static potential due to end caps gives harmonic confinement along the
trap axis (z-direction). If this is kept weak, multiple ions can be trapped in a line
along the z-direction. Typically the transverse frequencies are three to four times
more than the axial.

The centre-of-mass quantum dynamics of the ion is determined by the eigenstates
of the Hamiltonian

H = h̄νa†
z az + h̄νt(a†

xax + a†
yay) (17.3)
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The motion is thus separable into axial and transverse motion and, to be specific, we
now concentrate on the axial motion alone. As we neglect the transverse motion, we
will drop the subscript on az,a†

z .
The availability of lasers at appropriate atomic transition frequencies determine

which ions can be successfully trapped and cooled. The Wineland group at NIST
Colorado uses 9Be+ while the Blatt group in Innsbruck uses 40Ca+. After trapping
it is necessary to remove vibrational energy from the ion, that is to say, it must be
cooled. The initial temperature is of the order of 104 K. The first stage of cooling is
based on Doppler cooling and is very efficient, the second stage is based on resolved
sideband cooling (see below).

The extraordinary degree of control over quantum coherence that can be achieved
in an ion trap is due to a number of reasons. Firstly, it is possible to coherently couple
the vibrational motion and the internal electronic state using an external laser. Sec-
ondly, resolved sideband cooling enables the vibrational motion to be prepared in its
ground state with probability approaching unity. External lasers induce Raman tran-
sitions between the ground and excited internal electronic state in which one phonon
of vibrational energy is absorbed per excitation cycle. Finally, the internal electronic
state of a single trapped ion can be determined with efficiency approaching unity by
the method of fluorescence shelving enables.

We will assume that external lasers drive a two level transition from the ground
state |g〉 to the excited state |e〉. This could be a direct dipole transition, but for
quantum computing it typically involves a Raman two-photon transition connect-
ing the ground state to an excited meta-stable state. In either case the Hamiltonian
describing the system is (see 10.1),

H = h̄νa†a + h̄ωAσz +
h̄Ω
2

(
σ−ei(ωLt−kLq̂) + σ+e−i(ωLt−kLq̂)

)
(17.4)

where q̂ is the operator for the displacement of the ion from its equilibrium position
in the trap, ν is the trap (secular) frequency, Ω is the Rabi frequency for the two
level transition, ωA is the atomic transition frequency, and ωL, kL are the laser fre-
quency and wave number. The sigma matrices are defined in Sect. 10.1. There are
three frequencies in the problem: ν, ωA and ωL. By carefully choosing relationships
between these three frequencies various quantum interactions between electron and
vibrational degrees of freedom can be driven. The key point is that the phase of
the laser field as seen by the ion depends on the position of the ion. As the ion vi-
brates this phase is modulated at the trap frequency, which leads to sidebands in the
absorption spectrum for the two level system.

The ion position operator may be written,

q̂ =
(

h̄
2mν

)1/2

(a + a†) (17.5)

We now define the Lamb-Dicke parameter, η

η = kL

(
h̄

2mν

)1/2

= 2πΔxrms/λL (17.6)
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where the r.m.s position fluctuations in the oscillator ground state is Δxrms. Then
moving to an interaction picture via the unitary transformation

U0(t) = exp[−iνa†at− iωAσzt] (17.7)

the interaction Hamiltonian can be written as

HI(t) =
h̄Ω
2

(
σ− exp[−iη(ae−iνt + a†eiνt)]exp[−i(ωA−ωL)t]+ h.c

)
(17.8)

The exponential of exponentials make this a complicated Hamiltonian system. How-
ever in most ion trap experiments the ion is confined to a spatial region that is signif-
icantly smaller than the wavelength of the exciting laser so that we may assume that
the Lamb-Dicke parameter is small η < 1 (typically η ≈ 0.01−0.1). Expanding the
interaction to second order in the Lamb-Dicke parameter gives

HI(t) =
h̄Ω
2

[1−η2a†a]
(

σ−e−iδt + σ+eiδt
)

−i
h̄Ωη

2

(
ae−iνt + a†eiνt)e−iδtσ−+ i

h̄Ωη
2

(
ae−iνt + a†eiνt)eiδtσ+

− h̄Ωη2

4

(
a2e−2iνt +(a†)2e2iνt)(e−iδtσ−+ eiδtσ+

)

where the detuning of the laser from the atomic frequency is δ = ω−ωL.
Tuning the frequencies so that δ is a positive or negative integer multiple of the

trap frequency leads to resonant terms, and all time dependent terms are neglected.
For carrier excitation, δ = 0, the resonant terms are

Hc = h̄Ω(1−η2a†a)σx carrier excitation (17.9)

where σx = (σ−+σ+)/2. If we take δ = ν so that the laser frequency is detuned be-
low (to the red of) the carrier frequency by one unit of trap frequency, ωL = ωA−ν ,
the resonant terms are

Hr = i
h̄ηΩ

2

(
aσ+−a†σ−

)
first red sideband excitation (17.10)

This is the Jaynes-Cummings Hamiltonian except that it involves the absorption of
a trap phonon as well as one laser photon. If we instead choose δ = −ν so that
ωL = ωA +ν , the laser is detuned one unit of vibrational frequency above the carrier
(a blue detuning), the resonant interaction Hamiltonian is

Hb = i
h̄ηΩ

2

(
a†σ+−aσ−

)
first blue sideband excitation (17.11)

This corresponds to an excitation process in which one photon is absorbed from
the laser and one trap phonon is emited . We can continue to define the second red
sideband excitation δ = 2ν and second blue sideband excitation δ = −2ν , and so
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Fig. 17.2 Energy level diagram for (a) carrier (b) first red sideband and (c) first blue sideband
excitation

on. In fig. 17.2 we give an energy level diagram that represents the carrier, red and
blue sideband excitations.

An ion that is excited to |e〉 can spontaneously decay to the ground state, enabling
another excitation. If we are tuned to the first red side band these cycles of excitation
and emission remove one phonon per excitation cycle, thus cooling the vibrational
degree of freedom. The external laser has coupled the vibrational motion to a very
low temperature heat bath: the vacuum radiation field at frequency ωA. For obvious
reasons this is know as side band cooling. Needless to say this is only possible if
we can spectroscopically resolve the red sideband. The width of each resonance is
due to the spontaneous emission rate, γ, so we require that ν > γ. The spectrum of
resonance fluorescence for a single trapped ion follows from the methods given in
Chap. 11. A detailed calculation in the low intenisity limit (Ω < γ) for a traveling
wave field, by Cirac et al. [6] shows that the spectrum of the motional sidebands
exhibits the following features:

• The first red side band is centred on ωL = ωA−ν and the first blue sideband is
centred on ωL = ωA + ν with linewidths determined by

γs = η2
(

Ω
2

)2

[P(ν + δ)−P(ν− δ)] (17.12)

where P(δ) = γ/(γ2 + δ2) and δ = ωL−ωA and γ is the spontaneous emission
rate.

• The ratio of the peak height of the red sideband to the blue side band is (n̄+1)/n̄
where n̄ is the steady state mean photon number of vibrational excitation.

Note that the heights of the peaks are different reflecting the fact that the red tran-
sition involves the absorption of a phonon while the blue involves the emission of a
phonon.

In the Lamb-Dicke limit relaxation is dominated by spontaneous emission into
the spectral peak at the carrier frequency (ω = ωA) so that one unit of vibrational
energy is removed on average per excitation cycle. We can understand this via a
simple rate equation approach. In Exercise 17.1, we find that the rate of change of
the average phonon number is given by

dn̄
dt

=−γ
(

η2Ω2n̄
2η2Ω2n̄+ γ2

)
(17.13)



352 17 Ion Traps

To be more realistic we also need to consider heating mechanisms, for example
off-resonant excitation of the blue sideband [5], and the probability of populating
the vibrational ground state in the steady state is less than unity. Despite the effects
of heating, resolved sideband cooling care prepare an ion in the vibrational ground
state with a probability greater than 99%, and was first achieved by the NIST group
in Boulder [7]. Another source of heating that is difficult to control is due to fluc-
tuating charge distributions on the trap electrodes. As these potentials change ran-
domly in time, they produce a stochastic displacement of the centre of the trap. In
Exercise 17.2 we consider this example in more detail.

We now turn to the problem of reading out the state of the ion. This is done by the
technique of a cycling fluorescent transition which requires an additional auxiliary
level, coupled by a strong probe laser to one or the other of the ground or excited
states. We will consider the readout of the ground state (see Fig. 17.3). If the ion is in
the ground state when the probe laser is turned on, fluorescent photons are scattered
in all directions and can easily be detected. On the other hand if the ion is in the
excited state, it is not resonant with the probe laser and no photons are scattered: the
ion remains dark.

The interesting phenomenon of fluorescent shelving will now arise if a second
weak laser induces incoherent transitions on |g〉↔ |e〉. These transitions are incoher-
ent as the strong coupling to the |a〉 state destroys coherence between the ground and
excited states, see [8]. The fluorescent signal due to the strong probe laser switches
on and off in the fashion of a random telegraph process. A typical signal is shown
in 17.3. In so far as fluorescence indicates that the ion is in the ground state, the ran-
dom switching of the fluorescence is a direct indicator of quantum jumps between
the ground and excited states [3].

The quality of the readout can be reduced to a single number, called the effi-
ciency, which is the conditional probability for a fluorescent photon to be detected
given the ion is in the ground state. This is a function of the integration time of
the fluorescent signal and the overall detection efficiency of the detection system.
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Fig. 17.3 Energy level diagram showing fluorescence readout of the ground atomic state. A strong
probe laser drives a dipole allowed transition between the ground state |g〉 and an auxilary state
|a〉 which decays back to the ground state at a rate Γ scattering many many photons. Also show is
fluorescent signal on the probe transition when a weak laser couples the ground and excited state
(reproduced, with permission, from Leibfried et al. [5]



17.3 Novel Quantum States 353

The integration time should be at least of the order of the average time between
photon emission events. In practice other sources of error must be considered,such
as dark counts in the detector. Typically the minimum time to distinguish ground
and excited states is of the order of 2 ms.

How efficient is the process of sideband cooling? We can only answer this if we
have an independent way to determine the vibrational state of the ion at the end of a
cooling phase. This may be done by coupling the vibrational motion to the internal
state of the ion and then using the fluorescent readout technique described above.
Suppose the electronic state of the ion can be coupled to its vibrational motion for a
time T using either the first red and blue sideband transitions. If we write the proba-
bility for the atom to found in the excited state after time T as PR

e (T ) and PB
e (T ) for

red and blue sideband excitation respectively it can be shown (see Exercise 17.3)
that the mean phonon number n̄ is given by n̄/(1 + n̄) = PR

e (T )/PB
e (T ). Thus mea-

surement of the ratio of excitation probability on the first red and blue sideband
yields n̄ directly.

17.3 Novel Quantum States

The ability to carefully control the coupling between internal electronic state of the
ion and its vibrational motion in the trap enables us to carefully engineer novel
quantum states of the vibrational degree of freedom. As an example we will here
consider the preparation of a “cat state”: a pure quantum state in which the two in-
ternal electronic states are correlated with different coherent states of the oscillator.

There are a number of ways to prepare the vibrational motion in a coherent state,
|α〉. The ion is first cooled to the vibrational ground state. A classical uniform driving
force oscillating at the secular frequency, ν , can then be applied by changing the bias
conditions on the trap electrode. Alternatively a non adiabatic displacement of the trap
centre can be made again by changing the bias conditions. Finally a spatially vary-
ing Stark shift can be applied by using the moving standing wave that results from
two laser beams with frequency difference Δω = ν to resonantly drive the motion
of the ion in the trap. If the laser polarisation is carefully chosen this will result in a
force that depends on the internal electronic state. From the point of view of the elec-
tronic and vibrational states, this is a two photon Raman process depicted in Fig. 17.4
that Stark shifts the excited state |e〉. We will refer to this choice of Raman pulses
as the Raman displacement pulse. If we detune the Raman lasers by a frequency
Δω = ωA we can drive a carrier transition that coherently superposes the ground
and excited states. We will refer to this choice of Raman pulses as the carrier pulse.

The state-dependent displacement is described by the interaction picture Hamil-
tonian

Hd = h̄χ(t)(a + a†)|e〉〈e|+ h̄Ω(t)σx (17.14)

the coupling constants χ and Ω are shown as time dependent as they can be turned
on and off with the external Raman displacement pulse (χ) or the external carrier
pulse (Ω).
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Fig. 17.4 A schematic indication of the optical transitions required to prepare a single ion in a
linear superposition of displaced ground states (coherent states). On the left is the Raman pulse
excitation scheme for applying a force to the ion conditional on it being prepared in the excited
electronic state. On the right is the carrier pulse excitation scheme for producing coherent exci-
tations of the internal electronic state leaving the vibrational motion unaffected. The vibrational
frequency is ν while the atomic transition frequency is ωa

Assume that initially the electronic system and vibrational motional are in the
ground state, |ψ(0)〉= |0〉⊗|g〉. In the first step, we apply a carrier pulse (so χ = 0)
for a time, T , such that ωT = π/2. This gives the state transformation

|0〉⊗ |g〉 π/2
=⇒ |0〉⊗ 1√

2
(|g〉+ |e〉) (17.15)

In the second step we turn off the carrier pulse and turn on the displacement
Raman pulse for a time τ . Only the |e〉 component sees the displacement, according
to (17.14) so the state is transformed as

1√
2
(|0〉⊗ |g〉+ |0〉⊗ |e〉) displace

=⇒ 1√
2
(|0〉⊗ |g〉+ |α〉⊗ |e〉) (17.16)

In the third step we apply a π = ΩT carrier pulse that flips the electronic states and
inserts a π phase shift
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1√
2
(|0〉⊗ |g〉+ |α〉⊗ |e〉) π=⇒ 1√

2
(|α〉⊗ |g〉− |0〉⊗ |e〉) (17.17)

In the fourth step we apply another state selective displacement with a relative
phase φ ,

1√
2
(|α〉⊗ |g〉− |0〉⊗ |e〉) displace

=⇒ 1√
2
(|α〉⊗ |g〉− |αeiφ〉⊗ |e〉) (17.18)

In the fifth and final step, we apply another π/2 pulse to give

1√
2
(|α〉⊗ |g〉− |αeiφ〉⊗ |e〉) π/2

=⇒
( |α〉− |αeiφ 〉

2

)
⊗|g〉+

(|α〉+ |αeiφ 〉
2

)
⊗|e〉

≡ |α−〉⊗ |g〉+ |α+〉⊗ |e〉 (17.19)

If we now readout the state of the ion, the conditional states are highly non classical
superpositions of two different coherent states of vibrational motion,|α±〉 known in
quantum optics as cat states.

Fig. 17.5 The probability to
find the ion in the ground state
as a function of the phase of
displacements for different
choices of the magnitude of
displacement. From Fig. 4 of
Monroe et al., Science, 272,
1135 (1996)
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We thus have correlated different motional states with each of the electronic
states. This kind of entangled state is reminiscent of Schrödinger’s famous thought
experiment in which two different metabolic (and thus macroscopic) states of a cat
are correlated with a two level system in just this way. Indeed if we stopped af-
ter the second step the cat state analogy could be sustained with the identification
|α〉 → |alive〉 and |0〉 → |dead〉. However pursuing the analogy to the final state at
the end of step 5 produces the rather disturbing prospect (for the cat at least) of
correlating different superposition of metabolic states with the internal electronic
states. It is for this reason that superpositions of coherent states are called cat states
in quantum optics.

In the experiment of Monroe at al. [9], the presence of an entangled state of
different coherent states was demonstrated by measuring the electronic state at the
end of step 5. Repeated measurements enabled a sampling of the distribution Pg(φ),
for different values of φ . This is given by

Pg(φ) = 〈α−|α−〉
=

1
2

[
1− e−|α |

2(1−cosφ) cos
(|α|2 sinφ

)]
(17.20)

In Fig. 17.5 we reproduce the results from Monroe et al. [9] comparing the experi-
ment with the theoretical prediction in Eq. 17.20. The agreement is remarkable.

17.4 Trapping Multiple Ions

In a linear ion trap such as depicted in Fig. 17.1, multiple ions may be trapped and
cooled to the collective ground states of vibrational motion. Each ion has an equilib-
rium position, x̄i, corresponding to a minimum in the total potential comprising the
trap plus Coulomb potential for each ion. These equilibrium points are analogous to
the atomic ions at the lattice points of a crystal, however unlike a crystal they are not
equally spaced. In terms of a natural length scale given by the Coulomb potential
for each ion,

l =
(

Z2e2

4πε0Mν2

)1/3

, (17.21)

and a coordinate system in which z = 0 is in the middle of the trapped ions,
James [10] has computed the equilibrium positions for different numbers of ions
in a trap, see Fig. 17.6

If we expand the overall potential to second order in the small oscillations, qn(t)
(in dimensionless units), around the equilibrium points we obtain a simple coupled
oscillator Hamiltonian of the form,

H =
1

2M

N

∑
n=1

p2
m +

Mν2

2

N

∑
n,m=1

Anmqnqm (17.22)
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Fig. 17.6 The equilibrium positions for varying numbers of ions in the trap in units of the length
scale given in 17.21. From Fig. 1 James et al. Appl. Phys. B, 66, 181, (1998)

where pn is the canonical momentum to qn. Explicit expressions for the coefficients
Anm are given in [10]. This Hamiltonian represents a linear array of N simple har-
monic oscillators with quadratic coupling. We can now make a change of variable to
normal-mode coordinates (sometimes called collective or global coordinates). The
transformation is chosen to diagonalise the real symmetric N×N matrix with entries
Anm. The eigenvalue equation is

N

∑
n=1

Anmβ (p)
n = μpβ (p)

m (p = 1, . . . ,N) (17.23)

where the eigenvalues are μp > 0 and the eigenvectors �β (p) are assumed to be num-
bered in order of increasing eigenvalue and are normalised so that

N

∑
p=1

β (p)
n β (p)

m = δnm

N

∑
n=1

β (p)
n β (q)

n = δpq

For example, when N = 3 the eigenvalues are μ1 = 1,μ2 = 3,μ3 = 29/5. The normal
modes are then given in terms of the small oscillations as

Qp(t) =
N

∑
m=1

β (p)
m qm(t) (17.24)

Note the number of normal modes is equal to the number of ions. Of course we can
equally well write the local coordinates qn as

qm(t) =
N

∑
p=1

β (p)
m Qp(t) (17.25)

The first normal mode, Q1 represents the centre of mass mode in which all the
ions oscillate as if they were train wagons linked together. The second mode Q2 rep-
resents a breathing mode in which each ion oscillates with an amplitude proportional
to is displacement form the trap centre. In terms of the normal mode coordinates,
Qp and conjugate momenta Pp, the Hamiltonian is
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H =
1

2M

N

∑
p=1

P2
p +

M
2

N

∑
p=1

ν2
pQ2

p (17.26)

where the frequencies of each of the normal modes is given by

νp = ν√μp (17.27)

This is the Hamiltonian of N independent simple harmonic oscillators. Thus we
introduce raising and lowering operators for each normal mode as

Qp =

√
h̄

2Mνp
(bp + b†

p) (17.28)

Pp = −i

√
h̄Mνp

2
(bp−b†

p) (17.29)

with [bp,b†
q] = δpq.

Let us now assume that each ion in the trap can be addressed with a separate laser
beam. For example in a linear ion trap for 40Ca+ built in Innsbruck, the average
spacing for 4 ions was greater than 5μm, which is above the diffraction limit for the
laser beams. This spacing is also sufficient for the fluorescence (at readout) of each
ion to be separately imaged.

The interaction picture Hamiltonian describing how the ith ion is coupled to small
oscillations around equilibrium is given by an obvious generalisation of Eq. 17.4

H(i)
I = h̄

Ωi

2

(
σ (i)
− e−ikL(qi(t)e−i(ωA−ωL)t + h.c

)
(17.30)

where we have taken the Rabi frequency for the ith ion to be Ωi and σ (i)
± are the

Pauli raising and lowering operators for the ith ion, while qi(t) are local coordinates
of the ith ion. If we now again assume that the Lamb–Dicke parameter for each ion
is small, the interaction between the electronic and vibrational degree of freedom is

H(i)
I =−ih̄

kLΩi

2

(
σ (i)
− qi(t)e−i(ωA−ωL)t −h.c

)
(17.31)

This may be written in terms of the global modes as

H(I)
I =−ih̄

ηΩi

2
√

N

N

∑
p=1

s(p)
i

(
bpe−iνpt + b†

peiνpt
)

e−i(ωA−ωL)tσ (i)
− −h.c (17.32)

where s(i)
p =
√

Nμ−1/4
p β (p)

i .
We now assume that we can tune the external laser to address only a single

global vibrational mode (a particular normal mode), say the centre of mass mode

at frequency, μ1 = ν and s(1)
i = 1 with ωA−ωL = ν . Then we can ignore all the

other modes and approximate the Hamiltonian as
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H(i)
I =−ih̄

ηΩi

2
√

N

(
σ (i)

+ b1 + σ (i)
− b†

1

)
(17.33)

This is the Cirac–Zoller Hamiltonian [1] and was used by these authors in a scheme
for quantum computing using trapped ions (see below). If there are many ions in the
trap this may not be a good approximation. In that case there are many normal modes
and it is difficult to resolve individual normal mode frequencies as they become
very closely spaced. To some extent this may be mitigated by cooling all the normal
modes to their ground states. Further discussion of the validity of this approximation
may be found in [10] and also [11].

There is an interesting interpretation of the Hamiltonian for local modes, (17.31).
Define

σ (i)
1 (t) = σ−e−iΔ t + σ+eiΔ t (17.34)

with Δ = ωA−ωL. Now define a quantum field ψ̂(x,t) = (2Mν/h̄)1/2qi(t) by re-
placing the discrete index, i, with a position variable x = idi where di is the posi-
tion of the ith ion form the centre of the trap. This field is a scalar field operator
describing the small oscillations of the ion at x from equilibrium. The interaction
Hamiltonian then takes the form

HI = h̄χψ̂(x,t)σ1(x,t) (17.35)

which is in the form of local field dipole detector interaction Hamiltonian, with
χ = ηΩ/2.

17.5 Ion Trap Quantum Information Processing

In 1995 Cirac and Zoller [1] proposed the first scheme for implementing quan-
tum logic gates for trapped ions. In a quantum computer information is stored in
the states of a collection of two level systems, generically referred to as qubits. In
the Cirac–Zoller (CZ) scheme, the qubits are the two-level electronic states of the
trapped ions. Arbitrary transformations of the state of a single qubit are easily im-
plemented by external laser fields. For universal computation we also need to have
access to two qubit interactions. However the electronic states of different ions do
not interact. CZ proposed to overcome this by using the collective vibrational mode
of the ions to implement a virtual interaction between the qubits.

We will discuss a way to implement a particular two qubit interaction, known as
a controlled NOT (CNOT) gate which is a universal two-qubit gate. If we denote
the two states of a qubit as |x〉,x = 0,1, the CNOT gate is defined by the unitary
transformation

UCN |x〉⊗ |y〉= |x〉⊗ |x⊕ y〉 (17.36)
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Fig. 17.7 The electronic level
scheme for each ion in the
CNOT gate scheme of Cirac
and Zoller

|e> |1>

|0>

where x⊕ y is addition modulo two. In words, the state of the second qubit, called
the target, is flipped if and only if the state of the first qubit, the control, is |1〉. In all
cases the state of the control qubit is unchanged.

In the CZ scheme each ion has a set of internal electronic levels, |0〉, |1〉 and |e〉,
depicted in Fig. 17.7. The mapping between physical electronic states and logical
states is |0〉 ↔ |0〉, |1〉 ↔ |1〉. Note that in addition to the qubit states, there is an
additional auxiliary state, |e〉 which helps implement the degree of control required.
We suppose that is possible to direct a laser onto a particular ion inducing elec-
tronic transitions in that ion alone. This can couple the qubit state of the ion to its
vibrational degree of freedom. In the Lamb–Dicke limit and for carefully chosen
detunings, it is possible to couple a single qubit state to a chosen collective state of
vibrational motion of all the trapped ions. In the CZ scheme the collective vibra-
tional modes are all prepared in the ground state by a prior sideband cooling step.

Let us suppose the laser is directed towards the nth ion and tuned to the first red
sideband of the collective centre of mass mode described by raising and lowering
operators, a†,a. The Hamiltonian for this is

H = h̄
ηΩ

2
√

N
(a|1〉n〈0|e−iφ + a†|0〉n〈1|eiφ ) (17.37)

If this laser is on for a time T such that ηΩT
√

N = kπ ( a kπ-pulse), the unitary
operator,

Uk,n
01 (φ) = exp

[
−i

π
2

(a|1〉n〈0|e−iφ + a†|0〉n〈1|e−iφ )
]

(17.38)

is implemented. This unitary interaction couples the electronic states to the vibra-
tional phonon number states |0〉, |1〉;

Uk,n
01 (φ)|0〉n|1〉 = cos(kπ/2)|0〉n|1〉− ieiφ sin(kπ/2)|1〉n|0〉 (17.39)

Uk,n
01 (φ)|1〉n|0〉 = cos(kπ/2)|1〉n|0〉− ie−iφ sin(kπ/2)|0〉n|1〉 (17.40)

We will also need to implement kπ pulse between the ground state |0〉 and the aux-
iliary excited state |e〉. This implements the unitary transformation

Uk,n
0e (φ) = exp

[
−i

π
2

(a|e〉n〈0|e−iφ + a†|0〉n〈e|e−iφ )
]

(17.41)

and can be done by changing the polarisation of the exciting laser.
We now consider a three pulse sequence: on the mth ion implement U1,m

01 (0),
then on the nth ion a 2π pulse between the ground state and the auxillary excited
state, U2,n

0e (0), finally, again on the m’th ion, U1,m
01 (0). The three pulse sequence thus

implements the product unitary, Um,n = U1,m
01 (0)U2,n

0e (0)U1,m
01 (0). Acting on each of
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the four possible two qubit states of the ions we find that all states remain unchanged
except when both ions are initially excited;

|1〉m|1〉n→−|1〉m|1〉n (17.42)

This is a two qubit gate known as the CSIGN gate. To use this to implement a CNOT
gate we now choose one of the ions to be the control qubit, say mth ion, and first use
a laser pulse to put it into a superposition of the logical states, |0〉m + |1〉m. This can
be done by tuning the laser to the carrier frequency so that it is resonant with the
|0〉m↔ |1〉m transition, adjusting the phase and pulse area to implement the unitary

Vm = exp
[
−π

4
(|1〉m〈0|−h.c.)

]
(17.43)

After we implement the V single qubit unitary on the mth ion we implement a
CSIGN between the mth ion and the nth ion, target ion. Finally we again act with
a V pulse on the mth ion. The net effect is to implement a CNOT gate between the
mth ion as the control on the nth ion as the target. Clearly the ions do not need
to be adjacent. Furthermore we can implement a number of CNOT gates between
different pairs in parallel so long as we can individually resolve the ions with the
control lasers. The Cirac–Zoller scheme was first implemented by the Innsbruck
group led by Blatt in 2003 [12]. They used two 40Ca+ ions held in a linear trap and
individually addressed by focussed laser beams.

Other schemes have been proposed for implementing quantum gates in ion traps.
Sørenson and Mølmer [13] developed a scheme which mitigates to some extent the
deleterious effects of noise entering via the vibrational degree of freedom (e.g. patch
potential heating) and implemented by the Wineland group in NIST [14]. A related
scheme [15] uses far off-resonance optical dipole forces to implement a geomet-
ric phase gate, also first implemented by the NIST group [16]. The basic idea of a
geometric phase gate is to use a sequence of laser pulse sequences, applied to two
ions, that move the vibrational degree of freedom of the ion through a loop in phase
space that depends on the internal states of the two ions. A simple, though imprac-
tical, way to achieve this is to use phase space displacements that move around a
rectangle in phase space, starting at the origin, in a direction that depends on the
internal state of the ion. For example, the unitary operators

Uj(κx) = e−iκx p̂σz,n/h̄ (17.44)

Uj(κp) = e−iκpx̂σz,n/h̄ (17.45)

give conditional displacements of the vibrational degree of freedom along the x-axis
for the jth ion in the case of Uj(κx) and along the p-axis in the case of Uj(κp). If
we use the commutation relation [x̂, p̂] = ih̄ we can show that the following

Uk(κp)Uj(−κx)Uk(−κp)Uj(κx) = eiκxκpσz, jσz,k (17.46)
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|0>(1)|0>(2) |1>(1)|1>(2) |0>(1)|1>(2) |1>(1)|0>(2)

−χ

−χ

χ

χ
x

p

Fig. 17.8 The conditional phase space displacements of the vibrational degrees of freedom of
two ions. Four cases are shown corresponding to the four distinct states of two qubits. The path
followed is different for each case but the enclosed area is the same

This is an Ising-like two qubit unitary interaction between the j,kth qubits. Note
that there is no dependance on the vibrational degree of freedom at all. Inspection of
the various phase space orbits, see Fig. 17.8 indicates why this is called a geometric
phase gate. The effective conditional phase between the two qubits is proportional
to the area of the rectangle, χ = κxκp and the sign is given by the sense of rotation. It
is clear that the actual shape of the closed orbit in phase space does not matter: only
the area and sense of rotation matter. In an experiment the phase space rotations are
done by a time varying driving fields, with both amplitude and phase modulation
(see Exercise 17.3). The idea of conditional phase space displacements opens up a
path to fast quantum gates for two ions [17].

Exercises

17.1 A laser is tuned to the first read sideband transition for a single two level tran-
sition, |g〉 ↔ |e〉, with a spontaneous emission rate of γ. Ignoring all but the
spontaneous emission decay channel, the master equation (in the interaction
picture) describing this system is

dρ
dt

=
ηΩ
2

[aσ+−a†σ−,ρ ]+ γD [σ−]ρ (17.47)

where η is the Lamb–Dicke parameter, Ω is the Rabi frequency for the
transition and a,a† are the lowering and raising operators for the vibra-
tional motion of the ion in the trap. Obtain equations of motion for n̄ =
〈a†a〉, 〈a〉, 〈σ±〉, 〈σz〉 by factorising all higher order moments in the equa-
tions of motion. Assuming that the spontaneous emission rate is large enough
so that the average polarisation 〈σ±〉 is stationary and the vibrational motion
is slaved to the atomic motion, show that the rate of change of n̄ is given by
(17.13).

17.2 A simple mode for the heating of a trapped ion due to fluctuation potentials
may be given in terms of the Hamiltonian

H(t) = h̄νa†a + h̄ε(t)(a + a†) (17.48)
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where ε(t) is fluctuating force term with the following classical moments

ε̄ = E (ε(t)) = 0

G(τ) = E (ε(t)ε(t + τ)) =
D
2γ

e−γ|τ|

Show that the heating rate is given by

d〈a†a〉
dt

=
π
2

S(ν) (17.49)

where the noise power spectrum for the fluctuating force is defined by

S(ω) =
1

2π

∫ ∞

−∞
e−iωtG(τ) (17.50)

17.3 Show that if a harmonic oscillator in its ground state is subjected to a sequence
of displacements in phase space that form a closed loop, the state is returned
to the ground state up to an overall phase proportional to the area of the loop.
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Chapter 18
Light Forces

Abstract In recent years it has become possible to manipulate atoms with light
beams, to trap them and cool them to temperatures of milliKelvin and below. The
first proposal of laser cooling by Hänsch and Schawlow [1] was based upon Doppler
cooling in a two-level atom. Consider an atom irradiated by counterpropagating
laser beams tuned to the low frequency side of atomic resonance. The beam counter-
propagating with the atom will be Doppler shifted towards resonance, thus increas-
ing the probability of photon absorption. The beam co-propagating with the atom
will be frequency-shifted away from resonance, so there will be a net absorption of
photons opposing the motion of the atom. The absorbed photon gives the atom a
momentum impulse Δp = h̄k = h/λ in the direction of the beam. The atom re-emits
a photon by spontaneous emission in a random scattering direction. Thus, the net
force of the time averaged emitted photons is zero. The resultant force due to the
absorption of the photons opposes the atom’s motion. By surrounding the atom with
three pairs of counter-propagating beams along the x, y and z axes, a drag force
opposing the velocity of the atom can be generated. The term “optical molasses”
was coined to describe this situation. For two level atoms the minimum temperature
achievable, the so-called Doppler limit, was predicted to be kBT = h̄γ/2, where γ
is the atomic decay rate. Optical molasses in sodium was first observed in 1985 by
Chu et al. [2] with a temperature∼ 240μK, close to the Doppler limit.

In order to trap the cold atoms, techniques including purely optical forces, the
dipole trap, or a combination of optical and magnetic forces, the magneto-optical
trap (MOT), were developed. Experiments performed by W. Phillips [3] and col-
leagues cooling sodium atoms in a MOT recorded temperatures considerably lower
than expected, i.e. ∼ 40μK as opposed to TD ∼ 240μK. The explanation for the
lower temperatures observed experimentally was given by Dalibard and Cohen-
Tannoudji [4] and Chu [5] and colleagues. They showed that optical pumping be-
tween atomic magnetic sublevels could result in lower temperatures (sub-Doppler
cooling) with a limit close to the recoil energy,

kBT = h̄ωRec ,

with h̄ωRec = h̄2k2/2M.

365
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More recently, sub recoil cooling schemes have been proposed and implemented,
using, for example, the accumulation of ultracold atoms in dark states, which do not
couple to the light fields provided the atomic kinetic energy is less than the recoil
energy.

In 1997 the Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-
Tannoudji and William Phillips for their work on atom trapping and cooling. In
this chapter we shall present a theoretical description of light forces on a two level
atoms. We shall follow closely the treatment developed by Gordon and Ashkin [6]
and Cohen-Tannoudji [7].

18.1 Radiative Forces in the Semiclassical Limit

We begin with the Hamiltonian for a two–level atom coupled to the electromagnetic
field and driven by a near–resonant laser field:

H = HA +HV +HAL +HAV . (18.1)

Here, HA is the atomic Hamiltonian,

HA =
�P2

2m
+

h̄ωa

2
σz (18.2)

with σz = (|e〉〈e|− |g〉〈g|), HV is the Hamiltonian of the (vacuum) radiation field,
HAV is the coupling of the atom to this field, and HAL describes the atom–laser
coupling,

HAL(�R) =−�d ·�EL(�R,t) = h̄ΩL(�R)
[
σ+e−i(ωLt−Φ(�R)) + h.c.

]
, (18.3)

where σ+ = |e〉〈g| and the rotating wave approximation has been made. The inter-
action with the vacuum field is

HAV(�R) = h̄
[
σ+Γ(�R)+ σ−Γ†(�R)

]
, (18.4)

where Γ(�R) is the bath operator for the vacuum defined as

Γ(�R) = ∑
k

gkbke−i(ωkt−�k·�R) (18.5)

(see Sect. 10.1).
The force acting, �F(�R), on the atom is given by

�F(�R) =−∇HAL(�R)−∇HAV(�R)
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The coupling of the atom to the vacuum radiation field is responsible for spon-
taneous emission. This process introduces friction and damping to the system–
necessary for Doppler cooling – but it also introduces some of the fluctuations which
lead to momentum diffusion, limiting the final temperatures.

In a classical description the atom has a well–defined position and a well–defined
momentum. For a semiclassical description to be valid, one therefore requires that
the atomic wave packet be sufficiently well localised in position space and in mo-
mentum space.

Denote the spatial and momentum spreads of the atomic wave packet by ΔR
and ΔP, which must satisfy (ΔR)(ΔP) ≥ h̄. The force exerted by the laser on the
atom varies on a distance determined by the laser wavelength λL. If the atom is
very well localised on this scale we can neglect the fluctuations of the force due to
the spread in atom positions and simply evaluate the force at the average position
of the wave packet. Furthermore, as atoms moving with different velocities see a
varying Doppler shift, the force due to the laser will also fluctuate due to momentum
fluctuations. However if the initial momentum fluctuations are small enough we can
neglect fluctuations in Doppler shifts and assume all atoms see a single Doppler
shift determined by the mean velocity of the atomic wave packet. We are thus led to
two conditions for a semiclassical description to be valid (i) that the position spread
be small compared to λL,

ΔR� λL ⇔ kLΔR� 1 (18.6)

and
(ii) that the velocity spread be small enough that the corresponding spread of
Doppler shifts be negligible compared to the natural linewidth γ ,

kLΔP
m
� γ . (18.7)

Combining (18.6) and (18.7) with the uncertainty relation gives

h̄k2
L

m
� γ or h̄ωrec� h̄γ . (18.8)

It turns out that this is equivalent to the condition that the timescale for internal
atomic evolution (∼ γ−1) is much shorter than the timescale for external evolution
[∼ (h̄k2

L/m)−1], i.e., for damping of the motion.
We now denote the mean atomic position and momentum by�r = 〈�R〉 and �p = 〈�P〉.

The semiclassical force is given by

�f =− 〈∇HAL(�r,t)〉|�r=�r0+�v0t . (18.9)

Note that contribution from the atom–vacuum–field coupling term, HAV, vanishes,
due to the symmetry of spontaneous emission. Now

−∇HAL(�r,t) =−h̄σ+exp−iωLt∇
[
Ω(�r)exp−iΦ(�r)

]
+ h.c. , (18.10)
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and we can write

∇
[
ΩL(�r)exp−iΦ(�r)

]
= ΩL(�r)exp−iΦ(�r)

[
�α(�r)− i�β(�r)

]
(18.11)

where

�α(�r) =
∇ΩL(�r)
ΩL(�r)

, �β (�r) = ∇Φ(�r) . (18.12)

�α(�r) – characterises spatial variation of the Rabi frequency.
�β (�r) – characterises spatial variation of the phase.

This gives the following expression for the mean force,

�f (�r,t) = −2Re
{
〈σ+(t)〉 h̄ΩL(�r)exp−i[ωLt+Φ(�r)]

[
�α(�r)− i�β(�r)

]}

= −2h̄ΩL(�r)
[
u(t)�α(�r)+ v(t)�β(�r)

]
, (18.13)

where 〈σ+(t)〉= Tr[σ+ρint(t)], with ρint(t) the internal atomic density operator, and

u(t) = Re
{
〈σ+(t)〉exp−i[ωLt+Φ(�r)]

}
(18.14)

v(t) = Im
{
〈σ+(t)〉exp−i[ωLt+Φ(�r)]

}
. (18.15)

The average values of the internal atomic operators are computed from the optical
Bloch equations, which, in terms of the variables defined above, take the form

u̇ = −(γ/2)u +(δ + Φ̇)v

v̇ = −(γ/2)v− (δ + Φ̇)u−2ΩLw

ẇ = −(γ/2)− γw+ 2ΩLv (18.16)

where w = [〈σ+σ−〉−〈σ−σ+〉]/2 is the inversion, δ = ωL−ωA is the laser–atom
detuning, and

Φ̇ =�v ·∇Φ =�v ·β . (18.17)

18.2 Mean Force for a Two–Level Atom Initially at Rest

Some physical insight into the nature of the forces acting on the atom can be gained
by considering the zero velocity case. Consider a two–level atom initially at rest at
the origin:

�r = 0 , �p = 0 . (18.18)

The steady state solutions of the optical Bloch equations are:
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uss =
δ

2ΩL

s
1 + s

(18.19)

vss =
γ

4ΩL

s
1 + s

(18.20)

wss = − 1
2(1 + s)

(18.21)

where s is the saturation parameter,

s =
2Ω2

L

δ 2 +(γ2/4)
. (18.22)

Note that the population of the upper state is given by

Pe
ss = wss + 1/2 =

1
2

s
1 + s

. (18.23)

Substituting the steady-state values uss and vss in the expression (18.13) for the
force gives the average force in the case where the internal degrees of freedom have
reached their steady state (adiabatic approximation). The mean force �f f is the sum
of two contributions proportional to v and u, respectively. These two contributions
are known as the spontaneous force and the dipole force (or dissipative force and
reactive force).

The spontaneous force is due to the radiation pressure. It results from the absorp-
tion of photons from a traveling wave laser from which the atom receives a transfer
of momentum. The subsequent spontaneous emission of photons does not contribute
to the average force since spontaneous emission occurs with equal probabilities in
all directions. The dissipative force is zero for a stationary atom in a standing wave
since absorption of photons from both directions cancel. The spontaneous force is
given by the component proportional to vss,

�fspon =−2h̄ΩLvss
�β . (18.24)

Note that −2ΩLvss = γρe
ss which is simply the mean number of photons sponta-

neously emitted per unit time.
For a plane wave,

�EL(�r,t) = �E0 cos
(

ωt−�kL ·�R
)

(18.25)

The phase of the field is Φ(�r) =−�kL ·�R which gives

β = ∇Φ|�r=0 =−�kL , (18.26)

and the force,
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fspon = h̄kL

(γ
2

) 2Ω2
L

δ 2 +
γ2

4
+ 2Ω2

L

. (18.27)

For low intensity (s � 1) fspon ∝ Ω2
L ∼ IL (laser intensity). For high intensity

laser fields fspon→ h̄kL
γ
2 , that is the maximum force is limited by the spontaneous

emission rate. The maximum acceleration imparted to the atom by the dissipative
force is,

�amax =
h̄�kL

m
γ
2

. (18.28)

While the recoil velocity vrecoil = h̄kL
m due to absorption of a single photon is small

(∼3 cm/sec for sodium, ∼3 mm/sec for cesium), the number of fluorescent cy-
cles/sec is high for intense fields. For sodium γ−1 = 1.6× 10−8 s, which gives
amax ∼ 106 m/s2 which is 105 times the acceleration due to gravity.

The dipole force is given by the component proportional to uss:

�fdip =−2h̄ΩLuss�α (18.29)

In a plane travelling wave, �α = 0 as the amplitude is independent of�r and hence
�fdip = 0. The dipole force is only nonzero if the laser field is a superposition of
plane waves, e.g., a laser standing wave. The dipole force results from the absorp-
tion of a photon with momentum h̄k from a standing wave and reemission of a
photon in the opposite direction, that is with momentum −k. This results in a total
momentum gain for the atom 2h̄k. For a travelling wave laser the dipole force is zero
since photons can only be reemitted into the same direction from which they where
absorbed.

Using the solution for uss,

�fdip =−h̄δ
∇(Ω2

L)
δ 2 +(γ2/4)+ 2Ω2

L

(18.30)

For δ < 0 (ωL < ωA), the dipole force pushes the atom towards regions of higher
intensity since sgn{�fdip}= sgn{∇IL} (and vice–versa for δ > 0). For each value of
Ω2

L (with ΩL� γ), �fdip is optimised for δ ∼ΩL, and

(
�fdip

)
max
� h̄∇(Ω2

L)
ΩL

� h̄∇ΩL (18.31)

Hence, �fdip increases with laser intensity and is not bounded like �fspon so that much
greater acceleration is possible with the dipole force.

The dipole force can be derived from an effective potential U as

�Fdip =−∇U , (18.32)
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with

U(�r) =
h̄δ
2

ln

[
1 +

2Ω2
L(�r)

δ 2 +(γ2/4)

]
. (18.33)

For δ < 0, a region of maximum intensity appears as an attractive potential well
for the atom. For a given ΩL, the maximum depth of the potential well occurs for a
saturation parameter s� 4 giving

|Umax| � 0.6 |h̄Ωmax
L | . (18.34)

18.3 Friction Force for a Moving Atom

Now suppose that the atom is moving with a velocity�v, such that

�r =�vt (�r = 0 at t = 0) . (18.35)

As previously we assume also that we are in the semiclassical limit so that fluctu-
ations in velocity due to momentum dispersion in the wave packet can be ignored.
The velocity, �v, is determined by the average momentum of the wave packet. We
assume a laser plane wave with wave vector�kL, so that the Rabi frequency

ΩL(�r =�vt) = Ω0 = constant (18.36)

while

Φ(�r) =−�kL ·�r ⇒ Φ̇ =
d�r
dt
·∇Φ =�v ·∇Φ =−�kL ·�v . (18.37)

Since ΩL and Φ̇ are time independent (and hence the coefficients of the optical
Bloch equations are time independent), the steady state solutions are as before (for
a stationary atom), but with ωL→ ωL−�kL ·�v, i.e., an atom moving with velocity �v
“sees” the laser frequency shifted by the Doppler shift −�kL ·�v. Hence, the force is

�f = h̄�kL
γ
2

2Ω2
0

(δ −�kL ·�v)2 +(γ2/4)+ 2Ω2
0)

. (18.38)

We assume �kL = −kL�ex and consider motion along the x axis. For δ < 0 (and
vx > 0), the force is negative and has a maximum where δ = −kLvx, i.e., where
the apparent laser frequency ωL + kLvx = ωA (see Fig. 18.1). Near vx = 0, one can
make an expansion in the velocity, writing where the term linear in vx is a friction
force, since it is proportional to vx. The coefficient of proportionality, α , is called
the friction coefficient and is derived as

α =−h̄k2
L

s
(1 + s)2

(
δγ

δ 2 +(γ2/4)

)
(18.39)
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Fig. 18.1 (a) Atom moving with velocity v0 in a laser travelling wave with wave vector �kL.
(b) Mean force experienced by the atom versus kLv0 in units of h̄kLγ

where s = (2Ω2
0)/[δ 2 +(γ2/4)]. The friction coefficient is optimised for δ = −γ/2

and s = 1 (Ω0 = γ/2), giving

αmax =
h̄k2

L

4
, (18.40)

so that the atomic velocity is damped at a rate

α
m

=
h̄k2

L

4m
=

εrec

2h̄
(18.41)

where εrec is the recoil energy, i.e., the external atomic variables, such as the ve-
locity, have a characteristic damping time on the order of h̄/εrec (typically between
1−100 μs� γ−1).

18.3.1 Laser Standing Wave—Doppler Cooling

The interaction with a standing wave can be considered as the interaction with a
superposition of two counter-propagating plane waves with the same amplitude E0.
However the force exerted by the two standing waves is not just the sum of the
radiation pressures of the two counter-propagating plane waves. Interference terms
play an important role.

We now consider a laser standing wave along the x axis, linearly polarised along
the z axis, so that

�EL(�r,t) =�εzE0 [cos(ωLt− kLx)+ cos(ωLt + kLx)]
= 2�εzE0 cos(kLx)cos(ωLt) (18.42)

The phase of the field is the same everywhere (�β = 0), while the Rabi frequency is
position dependent and can be written

ΩL(x) = 2Ω0 cos(kLx) (18.43)
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where Ω0 =−(dE0)/(2h̄), and

�α =−kL tan(kLx)�εx . (18.44)

For a moving atom, one can replace x with vxt in the optical Bloch equations, then
ΩL(x) becomes a sinusoidal function of t. In general, it is impossible to solve these
equations analytically.

For small velocities we can use an approximation scheme, first introduced by
Gordon and Ashkin [6], in which one makes an expansion in powers of kLvx/γ . The
zeroth order term represents the “adiabatic” solution, corresponding to the situation
where the motion is so slow that the internal state of an atom passing the position
x is the same as if it were at rest at x. The first order term gives the first correction
to the adiabatic approximation. Note that kLvx/γ is equal to the ratio between the
distance vxγ−1 over which the atom travels during the internal response time γ−1

and the laser wavelength k−1.
The expansion proceeds as follows. We write

u̇ =
(

∂
∂ t

+ v
∂
∂x

)
u = Bu− s (18.45)

where

u =

⎛
⎝ u

v
w

⎞
⎠ , s =

⎛
⎝ 0

0
γ/2

⎞
⎠ , B =

⎡
⎣−γ/2 δ 0
−δ −γ/2 −2ΩL(x)
0 2ΩL(x) −γ

⎤
⎦ (18.46)

and the “hydrodynamic derivative” d/dt = (∂/∂ t)+vx(∂/∂x) has been used. In the
steady state, we write

v
∂
∂x

u = Bu− s (18.47)

and insert the expansion
u = u(0) + u(1) + . . . (18.48)

of u in powers of kLvx/γ . To order 0,

u(0) = B−1s , (18.49)

which is the steady state Bloch vector for an atom at rest in x. To order 1, we get

v
∂
∂x

u(0) = Bu(1) ⇒ u(1) = B−1v
∂
∂x

u(0) . (18.50)

Inserting the expansion for u into the expression for the force, one obtains

fx(vx,x) = h̄
s

1 + s
δkL tan(kLx)

{
1 +

γ2(1− s)−2s2[δ 2 +(γ2/4)]
γ[δ 2 +(γ2/4)](1 + s)2 kLvx tan(kLx)

}
,

(18.51)
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where

s =
8Ω2

0 cos2(kLx)
δ 2 +(γ2/4)

. (18.52)

For weak intensities, the interference effects average to zero over a wavelength,
hence the friction force averaged over a wavelength coincides with the sum of the
two friction forces exerted by the two counterpropagating plane waves. In particular,

f̄ =−αv with α =−4h̄k2
LΩ2

0
δγ

[δ 2 +(γ2/4)]2
. (18.53)

Hence, because of the Doppler effect, for δ < 0 the atom gets closer to resonance
with the wave opposing its motion and further away from resonance with the other
wave, so that the two forces exerted by the two waves become unbalanced and
the net force opposes the motion of the atom. This is the mechanism for Doppler
cooling.

18.4 Dressed State Description of the Dipole Force

If the Rabi frequency is large compared to the spontaneous emission rate the dressed
atom picture provides an intuitive interpretation. We may write the interaction
Hamiltonian for a two level atom, with frequency ωa, interacting with a single mode
standing wave laser field with frequency ΩL = ωa + Δ

HI(x) =
h̄Δ
2

σz + h̄g(x)
(
aσ+ + a†σ−

)
, (18.54)

where g(x) = g f (x) is the spatially dependent vacuum Rabi frequency, σ+ = σ†
− =

|e〉〈g| and a,a† are the annihilation and creation operators for the field. The dressed
states (see section 10.2) for this interaction are:

|n,+〉 = sinθn(x)|n,e〉+ cosθn(x)|n + 1,g〉 (18.55)

|n,−〉 = cosθn(x)|n,e〉− sinθn(x)|n + 1,g〉 (18.56)

where |n,e〉= |n〉⊗|e〉, |n,g〉= |n〉⊗|g〉with |n〉 a photon number eigenstate. The
coefficients are given by

cos2θn(x) = − Δ/2
Ωn(x)

, (18.57)

sin2θn(x) =
g(x)

Ωn(x)
, (18.58)

and Ωn(x) =
√

g2(x)(n + 1)+ Δ2/4 is the effective Rabi frequency. The correspond-
ing energy levels are Un,±(x) =±h̄Ωn(x). This is a generalisation of the dressed state
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picture discussed in Sect. 10.2. since the expansion coefficients are now position de-
pendent. The dressed states form doublets separated the photon energy h̄ωL.

Typically the optical field is well approximated by a coherent state of large ampli-
tude. The Poisson nature of the photon number distribution in such a state enables us
to replace Ωn(x) by its average value Ω(x) =

√
g2I(x)+ Δ2/4 where I(x) = f 2(x)n̄

and n̄ is the average photon number is the field. Thus I(x) is the spatially varying
intensity of the field.

The variation in x of the energies of the dressed states are shown in Fig. 18.2
for two manifolds ε(N) and ε(N−1). The manifolds are connected by spontaneous
emission. Outside the laser beam the energy levels of the dressed states tend to the
uncoupled states and are separated by the detuning Δ. Within the laser beam I(x) is
nonzero and the splitting

h̄Ω(x) = h̄
√

4g2I(x)+ Δ2 (18.59)

between the two dressed levels of the same manifold increases with increasing val-
ues of I(x).

We shall now use this dressed state picture to provide a physical description of the
dipole force. Initially we shall neglect spontaneous emission. We assume the system
is either in state |n,+〉 or |n,−〉 and satisfies the semiclassical limit (7). Assuming the
atom velocity is sufficiently slow so that nonadiabatic transitions from one level to
another can be neglected, the system will follow adiabatically the level |n,+〉 or |n,−〉
in which it is found initially. The energy curves in Fig. 18.2 are then potential energy
level curves Ve,n(x) and Vg,n(x). The dressed atom therefore experiences a force

Fg =−∇Vg,n(x) =− h̄
2

∇Ω(x) , (18.60)

if it is in level |g〉 and a force

Fe =−∇Ve,n(x) =
h̄
2

∇Ω(x) =−Fg, (18.61)

if it is in level |e〉.

Fig. 18.2 The dependance of
the dressed state energy levels
on position due to a spatially
varying intensity, a Gaussian
beam profile
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Fig. 18.3 A slow moving
atom in a standing wave
is cooled by spontaneous
emission: Sisyphus cooling

|n + 1,+>

|n + 1,–>

|n, +>

|n, –>

|n – 1, +>

|n – 1,–>

This dependence of the force on the internal state is very similar to the Stern–
Gerlach effect that occurs for a spin 1

2 particle in an inhomogeneous magnetic field.
This effect is known as the optical Stern–Gerlach effect will be described in more
detail in Sect. 18.6. It also provides a mechanism for atom mirrors where atoms in
one of the dressed states are repelled by a light field.

Spontaneous emission causes the dressed atom to make a transition to a lower
manifold. In doing so it may change the type of state it is in e.g. a transition
|g,n+1 >→ |g,n〉 by emitting a photon. This causes the sign of the force to change
abruptly. The time intervals τ1 and τ2 spent in the different dressed levels between
two successive quantum jumps are Poisson random variables. This gives rise to the
fluctuations in the dipole force.

The mean dipole force in the steady state is given by the mean of the forces F1

and F2 weighted by the proportion of time spent in the type 1 and 2 levels, which
are simply the steady state populations of the dressed levels π1 and π2. Thus

〈
Fdip

〉
= F1π1 + F2π2 =− h̄2

2
∇Ω(x)(π1−π2) . (18.62)

This corresponds to the expression derived earlier.
The dressed state picture gives a clear illustration of the mechanism for cooling

a moving atom in a strong standing wave, known as Sisyphus cooling. In this case
I(x) = I0 sin2(kLx). Figure 18.3 represents the dressed states for a positive detuning
(blue detuning). The dressed states are linear combinations of ground and excited
states, the weighting of which varies sinusoidally in space. If we follow an atom
starting at the node of a standing wave in level |g,n + 1〉, it climbs up the light
gradient until it reaches the top (antinode) where its decay rate is a maximum as the
mixed state has a significant excited state component. It may then jump into level
|g,n + 1〉 which does not effect its mechanical motion or jump into level |e,n〉 in
which case the atom is again in a valley. It now must climb against the gradient to
reach the top where it will decay by spontaneous emission again. The mechanism
has been named Sisyphus cooling by analogy with the story from Greek mythology.
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Between two spontaneous emissions, the total energy (kinetic plus potential) of
the atom is conserved. When the atom climbs up hill, its kinetic energy is trans-
formed into potential energy by stimulated emission processes which redistribute
photons between the two counterpropagating waves at rate Ω . Atomic momen-
tum is therefore transferred to laser photons. The total atomic energy is then dis-
sipated by spontaneous emission which carries away part of the atomic potential
energy. The force reaches its maximum value for velocities such that the atom trav-
els over a distance of the order of a wavelength between two spontaneous emissions
(kLv0 ∼ γ). The magnitude of this friction force is directly related to the modulated
depth (Ω) of the dressed energy levels and hence increases indefinitely with laser
intensity.

18.5 Atomic Diffraction by a Standing Wave

We shall consider the deflection of a beam of two-level atoms by a classical standing
wave light field in a cavity. The atomic beam is normally incident on the standing
wave and experiences an exchange of momentum with the photons in the light wave.
We shall assume that the frequency of the light field is well detuned from the atomic
resonance so that we may neglect spontaneous emission.

The Hamiltonian describing the interaction is

H = �
ω0

2
σz +

p2

2m
+�Ω(σ−e−iωt + σ+eiωt)coskx , (18.63)

where p is the centre of mass momentum of the atom along the transverse (x direc-
tion), m is the atomic mass, σz and σ± are the pseudo spin operators for the atom,
ω0 and ω are the atomic and field frequencies, k = ω/c is the wave number of the
standing wave, and Ω = με0/� the Rabi frequency with μ being the dipole moment
and ε0 the maximum field amplitude. We shall assume that the interaction time is
sufficiently small that the transverse kinetic energy absorbed by the atom during the
interaction can be neglected. This is known as the Raman–Nath regime and requires
t < 2π/ωr, where the recoil energy is �ωr = (2r�k)2/2m where r is an integer. This
is equivalent to neglecting the term p2/2m in the Hamiltonian.

Transforming to the interaction picture with H0 = �ωσz the Hamiltonian may
be written in the form

H = �
δω
2

σz + 2�Ωσx coskx , (18.64)

where δω = ωa−ω and 2σx = σ+ + σ−. This Hamiltonian may be diagonalised
and written in the form

H = V (x)[cosθ (x)σz + sinθ (x)σx] (18.65)

where
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V (x) = �

√
(δω)2 +(2Ωcoskx)2,

cosθ (x) =
δω√

(δω)2 +(2Ωcoskx)2
,

sinθ (x) =
2Ωcoskx√

(δω)2 +(2Ωcoskx)2
.

In the limit of large detuning (δω � 2Ωcoskx),

cosθ ≈ 1, and sinθ ≈ 0,

so that

V (x)≈ �δω
(

1 +
2Ω2 cos2 kx

δω2

)
. (18.66)

This leads to the effective Hamiltonian

Heff = �
δω
2

σz +
(

2�Ω2 cos2 kx
δω

)
σz . (18.67)

The atomic state vector in the coordinate representation may be written as

〈x|ψ(t)〉= a(x,t)|a〉+ b(x,t)|b〉 , (18.68)

where |a〉 and |b〉 are the upper and lower atomic states, and a(x,t)(b(x,t)) are the
probability amplitudes for the atom to be in the upper (lower) state at the transverse
coordinate x at time t.

We assume that the atoms are initially in their ground state with a Gaussian wave-
function

a(ξ ,0) = 0,

b(ξ ,0) = (πσ2)−1/4 exp

(
− ξ 2

2σ2

)
, (18.69)

where ξ = kx and σ is proportional to the r.m.s. transverse position spread of the
input beam. This may be written as

b(ξ ,0) =

(
2σ2

η

π

)1/4

exp[−(σηξ )2] , (18.70)

where ση is the r.m.s. transverse momentum spread of the input beam scaled to the
photon momentum �k(η = p/�k). The Schrödinger equation in the large detuning
limit is

∂
∂τ

(
a
b

)
=

(
−iΔ− i cos2 ξ

2Δ 0

0 iΔ + i cos2 ξ
2Δ

)(
a
b

)
(18.71)
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where τ = Ωt and Δ = δω/2Ω. We shall assume that the atom interacts with a field
of constant amplitude for a time τ . The Rabi frequency is Ω.

The solution for b(ε,τ) may be written in the form [8]

b(ξ ,τ) = exp

[
i

(
Δ +

1
4Δ

)
τ
] ∞

∑
n=−∞

inJn

( τ
4Δ

)
exp(2inξ )b(ξ ,0) . (18.72)

Taking the Fourier transform of this relationship shows the effect in momentum
space is a convolution

b̃(η ,τ) = exp

[
i

(
Δ +

1
4Δ

)
τ
] ∞

∑
n=−∞

inJn

( τ
4Δ

)
δ (η−2n)∗ b̃(η ,0)

= exp

[
i

(
Δ +

1
4Δ

)
τ
] ∞

∑
n=−∞

inJn

( τ
4Δ

)
b̃(η−2n,0) (18.73)

where b̃ denotes the Fourier transform of b.
The scattered ground state wavefunction is a superposition of Gaussian modu-

lated plane waves with momenta p = 2n�k. The momentum transferred from the
field to the atom is in even multiplies of �k corresponding to the absorption of a
photon from the (+k) component, followed by induced emission into the (−k) com-
ponent of the standing wave. The final output momentum probability distribution
is composed of a comb of images of the initial momentum distribution. In order to
resolve these peaks it is necessary to have a narrow initial momentum spread such
that Δp� 2�k or ση � 1. The output momentum distribution is shown in Fig. 18.4
for ση = 0.1, where the propagation time after the interaction is assumed short so
that further spreading has been neglected. The above result holds for large atomic
detuning. For smaller atomic detunings spontaneous emission becomes important.
Since the recoil imparted to an atom by a spontaneously emitted photon occurs in a
random direction, exchanges of momentum in non-integral multiplies of �k may oc-
cur and the diffractive peaks will be smeared out. That is, as the laser is tuned closer

Fig. 18.4 Output momen-
tum distribution for atoms
scattered from a standing
optical wave in the Kapitza-
Dirac regime in the large
detuning limit. Initial RMS
momentum uncertainty is
ση = 0.1 (units of �k) and the
normalised interaction time
τ/Δ = 10



380 18 Light Forces

Fig. 18.5 Output momentum distribution for atoms scattered from a standing optical wave. Com-
parison of experimental data [20] (−) and theoretical predictions [21] (−−−) for (a) Δ = 0,
(b) Δ = 0.6, (c) Δ = 1.2 (from [10])
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to the atomic resonance one moves from the diffractive to the diffusive regime. The
transition from the diffractive to the diffusive regime has been demonstrated in an
experiment by Gould et al. [11]. A fit to their data using a calculation which in-
cludes spontaneous emission has been given by Tan and Walls [10] and is shown in
Fig. 18.5.

18.6 Optical Stern–Gerlach Effect

In the previous section, we discussed the diffraction of atoms in their ground state
from a standing wave light field. In order to resolve the diffraction peaks in the
momentum distribution it was necessary that the initial atomic spatial wave packet
be larger than a wavelength. In this regime, the momentum transfer is symmetrical
about Δp = 0 and is the same for input atoms in either the ground or excited states.
As the spatial extent of the input wave packet is reduced to a fraction of the optical
wavelength, the momentum transfer becomes asymmetrical and dependent upon the
initial atomic state. Figure 18.6 shows the outgoing probability density of the atomic
momentum for an initial atomic beam width σ = 0.3. The solid curve is for atoms
in the ground state while the dotted curve is for the excited state.

In the limit when the spatial extent of the input wave packet is very small com-
pared to the optical wavelength, an input beam is split into two beams depending
on its atomic state. This is called the optical Stern–Gerlach limit in which the atom
interacts with only a small part of the light wave (ΔxIN � 1/k) and the individual
photon exchanges are not resolvable (Δp� �k). In the large-detuning limit the mo-
mentum transfer, which can be many times the photon momentum, depends on the
intensity gradient of the optical field. An experimental demonstration of the optical
Stern–Gerlach effect has been given by Sleator et al. [12] using a beam of metastable
He atoms (Fig. 18.7).

Fig. 18.6 Output momentum
distribution for atoms scat-
tered from a standing optical
wave in the Stern-Gerlach
regime. Initial rms momentum
uncertainty is ση = 2.4 (units
of �k). The atomic beam is
incident midway between a
node and an antinode and the
normalised interaction time
τ/Δ = 20. (a) solid curve,
ground state atoms, (b) dotted
curve, excited state atoms
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Fig. 18.7 Deflection of an atomic beam by a standing wave as a function of the atomic beam
position in the standing wave. The detuning from resonance was Δ/2π = 160MHz. Position 0 on
the horizontal scale was arbitrarily chosen to be at a node. Inset: Atomic intensity profile at the
detector for the atomic beam at a position of −11μm in the standing wave. The peak at zero angle
is due to undeflected atoms [12]

We shall demonstrate how the standing wave optical field encodes information
about the atomic state in the centre of mass momenta of the outgoing atoms. A
non-destructive determination of the atomic state may be useful in conjunction with
micromaser experiments in which the photon statistics within the micromaser cav-
ities are indirectly measured via their effects on the states of the Rydberg atoms
which pass through them. The ability to spatially separate atoms according to their
state without destroying them also makes it possible to consider their subsequent
coherent recombination in an atomic interferometer.

In order to measure their atomic state we shall require that the momentum trans-
fer be well correlated with the initial atomic state and that the process of splitting
the input beam should not cause this atomic state to change. We shall demonstrate
how one may make a QND measurement of the atomic inversion. We consider the
case where the standing wave field is far detuned from the atomic resonance. In this
case we may use the effective Hamiltonian given by (18.67).

The inversion of the atom, σz, we take as the signal observable and the centre of
mass momentum p of the atom as the probe. It is evident that the Hamiltonian is
back action evading for σz which is a constant of the motion. We shall follow the
treatment given by Tan and Walls [13].

Consider a beam of atoms in a mixture of excited and ground states. The in-
teraction with the standing light wave will impart some momentum to these atoms
causing a deflection. The mean momentum transfer will have opposite signs for the
two states. The mean momentum transfer compared to the standard deviation of the
momentum transfer will determine how well the atomic beam can be separated into
two beams of either excited or ground state atoms.

The probability amplitudes a(ξ ,τ) and b(ξ ,τ) for the atom to be in the excited
and ground states at time τ are given in the large detuning limit by the solution of
(18.71).
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After passage through the field, the mean momentum transfer to this beam is
given by

〈ηOUT〉=
∫ ∞

−∞
a(ξ ,τ)∗

(−i∂
∂ξ

)
a(ξ ,τ)dξ +

∫ ∞

−∞
b(ξ ,τ)∗

(−i∂
∂ξ

)
b(ξ ,τ)dξ

(18.74)
where η = p/�k is a normalised momentum. Similarly the mean squared momen-
tum transfer is

σ2
η = 〈ηOUT2〉=

∫ ∞

−∞
a∗(ξ ,τ)

(−∂ 2

∂ξ 2

)
a(ξ ,τ)dξ

+
∫

b∗(ξ ,τ)
(−∂ 2

∂ξ 2

)
b(ξ ,τ)dξ . (18.75)

In the large detuning limit we find for a Gaussian beam with width σ centred at ξ0

〈ηOUT
± 〉=± τ

2Δ
e−σ 2

sin(2ξ0) (18.76)

〈ηOUT2

± 〉= σ2
η =

1
2σ2 +

τ2

8Δ2 [1−2e−2σ 2
sin2(2ξ0)− e−4σ 2

cos(4ξ0)] (18.77)

where the + sign is for initial state |e〉 and the − sign for initial state |g〉. In
Fig. 18.8 we plot these quantities as a function of the width of the atomic beam
σ for τ/Δ = 20. The mean momentum transfer depends on the gradient of the inten-
sity of the light field where the atom crosses and so the atomic beam must be narrow

Fig. 18.8 Mean (solid curve) and standard deviation (dashed curve) of the atomic momentum
plotted against the normalised width of the atomic beam. The atomic beam is incident midway
between a node and an antinode and the normalised interaction time τ/Δ = 20 (from [13])
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in order for the momentum transfer to be well defined. As the width of the atomic
beam increases, different portions of the beam are deflected differently, reducing the
mean momentum transfer. The variance of the output momentum arises from two
effects: The term involving (2σ2)−1 represents the original momentum uncertainty
of the input beam, which increases rapidly as σ is reduced. If, however, σ is in-
creased so that it covers a significant portion of an optical wavelength, the variation
in momentum imparted to different parts of the beam again increases the variance.
Consequently there is a minimum in the standard deviation, as seen in Fig. 18.8. The
condition for a good measurement is that the mean momentum transfer to the beam
prepared in an eigenstate is larger than the spread of the outgoing momentum. From
Fig. 18.8 it is clear that there is an optimal width of the input beam which gives the
best quality of measurement. This optimum width depends on the interaction time
since the mean momentum transfer rises with τ/Δ, and for larger interaction times
this will exceed the intrinsic momentum uncertainty for a narrower initial beam.
We may use the QND correlation coefficient introduced in Chap. 14 to evaluate the
quality of the measurement. In this case the signal is the atomic inversion σz and the
probe is the centre-of-mass momentum η of the atom.

These correlation coefficients depend on expectation values which have to be
taken over some initial state. We choose the state which is a statistical mixture of
ground and excited states with equal probability. In the large detuning limit the
measurement correlation may be written as

C2
AIN

s AOUT
P

=
|〈ηOUTσ IN

z 〉|2
〈ηOUT2〉〈σ IN2

z 〉

=
| 12 [〈ηOUT

+ 〉( 1
2 )−〈ηOUT− 〉(−1

2 )]|2
1
2(〈ηOUT2

+ 〉+ 〈ηOUT2

− 〉) 1
2 [( 1

2 )2 +(−1
2 )2]

, (18.78)

from (18.76 and 18.77) this may be written as

C2
AIN

s AOUT
P

=
2σ2τ2e−2σ 2

sin2(2ξ0)
4Δ2 + σ2τ2[1− e−4σ 2 cos(4ξ0)]

. (18.79)

The state preparation correlation C2
AIN

s AOUT
P

has an identical expression. In the large

detuning limit an atom prepared in an eigenstate of σz remains in an eigenstate of
σz. Consequently, the non-demolition correlation

C2
AIN

s AOUT
s

= 1 . (18.80)

In Fig. 18.9 we plot C2
AIN

s AOUT
P

as a function of the width of the atomic beam σ for

a range of different interaction times τ/Δ = 2, 5, 10, 20, 50.
The position of the beam centre is ξ0 = π/4 corresponding to the point midway

between a node and antinode where the intensity gradient is greatest. We see that
for sufficiently large interaction times and an atomic beam of optimal width the
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Fig. 18.9 Measurement correlation coefficient squared plotted against the normalised width of the
atomic beam for τ/Δ = (a) 2, (b) 5, (c) 10, (d) 20, (e) 50 (from [13])

measurement correlation may approach unity. Thus the deflection of an atomic beam
by a standing wave field may be used to give a good QND measurement of the
atomic inversion σz in the detuning limit. For smaller detuning a QND measurement
of an operator dxσ x +dyσy +dzσ z can be made. For example, for zero detuning the
appropriate QND observable is the atomic polarisation σx.

18.7 Quantum Chaos

A cold atom moving in a well detuned laser field sees a dipole potential that has
the same spatial dependence as the field intensity. These potentials are usually non
linear and anharmonic. They thus provide an ideal means to investigate anharmonic
quantum non linear dynamics. Given the ease with which the optical field can be
modulated in time, we also have the possibility of investigating non adiabatic dy-
namics of time dependent potentials and quantum chaos.

We can describe both spatial and temporal modulation through the Rabi fre-
quency Ω(x,t). As we have seen a two-level atom moving in one dimension (the x-
direction) in an off-resonant field can be well described by the effective Hamiltonian

Heff =
p2

x

2m
+
|Ω(x,t)|2

2Δ
σz (18.81)

where Δ = ωL−ωa. We will typically be concerned with a standing wave laser field
with wave vector k, with modulated intensity. In that case
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Ω(x,t) = Ω[1−2ε cos(ωτ)]sin(kx) (18.82)

Following [14] we introduce dimensionless variables for convenience:

k =
4h̄k2

mω
(18.83)

κ =
h̄k2Ω2

2mω2Δ
(18.84)

t = ωτ (18.85)

q = 2kx (18.86)

p =
2kpx

mω
(18.87)

Noting that the commutation relation for the dimensionless position and momentum
is

[q, p] = ik (18.88)

we see that k has the interpretation of a dimensionless Planck’s constant.
We first consider the case of a time independent standing wave. In this case the

Hamiltonian in dimensionless variables is

H =
p2

2
−κ cosq (18.89)

This is a standard problem in classical nonlinear dynamics and is fully integrable by
a canonical transformation to action-angle variables. If at time t = 0 the atom has
initial conditions (q(t = 0), p(t = 0)) = (q0, p0) it will move in the phase space so
as to conserve energy so it must remain on the curve E = p(t)2/2−κ cos(q(t)) =
p2

0/2−κ cos(q0). The motion is periodic if the initial energy is such that−κ < E <
0, in which case the atom remains localised in one well. For E > κ the motion is un-
bounded. The curve E = 0 is called the spearatrix. The frequency of the oscillatory
motion depends on energy, and tends to zero as the initial energy approaches zero
on the separatrix. This is shown in Fig. 18.10.

The nonlinear dependance of oscillator frequency on energy is important when
we add a periodic temporal modulation to the potential. For a simple harmonic oscil-
lator, resonance is only possible at one frequency and this does not depend on initial
conditions. For a non linear oscillator this is no longer the case and a complex hier-
archy of resonances is possible leading to chaos. In fact, periodically driven systems
with a nonlinear potential is generically chaotic even in one dimension. Consider the
case of an atom in a standing wave with modulated amplitude. The Hamiltonian is

H(t) =
p2

2
−κ(1−2ε cost)cosq (18.90)

As the Hamiltonian is periodic in time, the most appropriate way to describe the
dynamics is in terms of a Poincaré section with respect to time. This means that we
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Fig. 18.10 The energy dependance of the oscillation frequency for an atom moving in a sinusoidal
potential, ω(E) versus E/κ . Note that for energies at the bottom of the wells, the energy is almost
independent of frequency, and the motion is simple harmonic

only need to view the dynamics at discrete times which are multiples of the driving
period (see [15]). This defines a non linear map on phase space which is sometimes
called a stroboscopic map. In figure 18.11 we illustrate this for a variety of initial
conditions. A number of islands of regular motion are apparent surrounded by a sea
of chaotic orbits.

18.7.1 Dynamical Tunnelling

The regular orbits are near elliptic fixed points of period-one of the map. The two
inner regular orbits apparent in Fig. 18.11 are two distinct period-one orbits. If the
system is prepared with initial conditions close to one of these period-one orbits it
must remain within the island of stability surrounding the fixed point. A distribution
of phase space points initially localised in this region will remain localised. As we
now discuss, this is no longer the case quantum mechanically.

The quantum equivalent of a stroboscopic map is the unitary operator corre-
sponding to the dynamics integrated over one period of modulation. This is called
the Floquet operator, F̂ . Iterations of the quantum map are thus defined by

|ψn+1〉= F̂ |ψn〉 (18.91)

As the dynamics is not integrable even classically the operator F̂ is difficult find
and we must resort to numerical methods. See [16] for further discussion. Once it
is found, we proceed by first finding its eigenstates and eigenvalues (which must all
lie on the unit circle)



388 18 Light Forces

Fig. 18.11 The classical
phase space orbits for the
stroboscopic map with a
variety of initial conditions.
The modulation strength is
ε = 0.3

F̂ |φα〉= eiφα |φα〉 (18.92)

It is a remarkable fact that the eigenstates can often be put in one to one correspon-
dence with particular orbits of the classical map, using a phase space representation
such as the Q-function. For example there are pair of nearly degenerate eigenstates
associated with the period one fixed points near the origin in Fig. 18.11. Given the
solution to the eigenvalue problem the iteration of a given initial state is found by
expanding the state over the Floquet eigenstates, |ψ0〉= ∑α cα |φα〉

|ψn〉= ∑
α

cα einφα |φα〉 (18.93)

We now take the initial state to be well localised inside the island of stability
surrounding one of the period one orbits. We iterate the state and at each iteration
step calculate the average and variance of the position and momentum. The results
are plotted in Fig. 18.12. We see a very different situation to what would be expected
classically (also shown in the figure). The quantum state does not remain localised
near the period one fixed point at which it started. Rather it appears to tunnel across
classically forbidden regions of phase space to the symmetric partner of the fixed
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Fig. 18.12 The average and variance of position and momentum for an initial classical distribution
(a) localised near a period one fixed point and (b) an initial quantum state localised near a period
one fixed point. The quantum system demonstrates tunneling form one period one fixed point to
another
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point. This is called dynamical tunneling [17]. Dynamical tunneling was observed
by Hensinger et al. [18] using a Bose Einstein condensate to prepare the initial
localised state in phase space.

18.7.2 Dynamical Localisation

More complicated anharmonic modulation of the optical dipole potential can be
easily implemented. An extreme case corresponds to a kicked system in which the
standing wave is pulsed on and off very quickly compared to the period of free
dynamics between pulses. In the limit of infinitely short pulses we obtain the delta
kicked rotor described by the Hamiltonian

H(t) =
p2

2
−κ cosq∑

n
δ (t−n) (18.94)

This is a well studied system that classically is described by a stroboscopic map
that is an example of the standard map. If the kicking strength, κ , is sufficiently
large the phase space is dominated by large sea of chaotic orbits. In this region
an initial well localised distribution of points spreads very rapidly in position but
only slowly diffuses in momentum. In fact to a very good approximation the spread
in momentum is indeed described by a diffusion process with diffusion constant
proportional to κ . See [19] for further detail.

The quantum description of this system gives a very different result. An initial
state well localised in momentum will follow the classical diffusion until a time
know as the break time. At that time the diffusion in momentum will cease and the
momentum variance saturates. This is illustrated in Fig. 18.13. Dynamical localisa-
tion using laser cooled atoms was first observed by Raizen’s group in 1995 [20].

Fig. 18.13 Classical (dashed)
and quantum (solid) of the
average momentum squared
versus kick number. In this
example k̄ = 0.24,κ = 1.2
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18.8 The Effect of Spontaneous Emission

In this section we give a brief presentation of the effect of spontaneous emission
on the nonlinear quantum dynamics of atoms. Even in a far detuned optical dipole
potential there is a non zero probability that the atom will be excited. In that case it
suffers a recoil induced momentum kick. Once in the excited state it can relax to the
ground state by either stimulated emission or spontaneous emission. The best way to
deal with the stochastic momentum kicks resulting from absorption, or stimulated
and spontaneous emission is via the stochastic Schrödinger equation discussed in
Chap. 6.

We will follow the approach of Dyrting [21]. The coherent coupling between
the internal and center-of-mass variables is through the position dependent Rabi
frequency. We can write the Rabi frequency in the general form

Ω(x) = Ω f (kx,t) . (18.95)

k = c/ωL is called the wavenumber and ωL is the frequency of the laser. Ω is a
measure of the intensity of the field and without loss of generality it can be chosen
to be real and may be explicitly time dependent. The quantum mechanical atom
can be described by its internal state |σ〉, where σ represents either g or e, and a
centre-of-mass state |ψ〉.

The master equation for a two-level atom interacting with the field including
spontaneous emission is

dR̂
dτ

=− i
h̄

[
Ĥ, R̂

]− γL R̂ . (18.96)

The Hamiltonian Ĥ generates the coherent dynamics for the center-of-mass and in-
ternal states of the atom. The superoperator L describes incoherent evolution due
to coupling with the vacuum field modes at a rate γ . The effect of a spontaneous
emission causes the atom to make a transition from its internal excited state to its
ground state, and the spontaneously emitted photon changes its center-of-mass mo-
mentum by an amount h̄kn. The direction of the emitted photon n is random and has
the distribution function

φ(n) =
3

8π

(
1− (d ·n)2

d ·d

)
. (18.97)

L is given by

L R̂ =
1
2

(
σ̂†σ̂ R̂+ R̂σ̂†σ̂ −2σ̂N R̂σ̂†) , (18.98)

and N is the superoperator describing the effect of a spontaneous emission on the
transverse momentum of the atom

N R̂ =
∫

φ(n)exp(inkx̂)R̂exp(−inkx̂)dn . (18.99)
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Here the integral is done over the surface of the unit sphere n ·n = 1.
In the limit that the detuning Δ is much larger than the Rabi frequency Ω and

the spontaneous emission rate γ the system can be described by the effective master
equation

dR̂
dτ

= − i
h̄

[
Ĥ0, R̂

]− γL R̂+
i
Δ

[
Ω(x̂)σ̂†,

(
1− i

γ
Δ

L
)−1 [

Ω(x̂)†σ̂ , R̂
]]

− i
Δ

[
Ω(x̂)†σ̂ ,

(
1 + i

γ
Δ

L
)−1 [

Ω(x̂)σ̂†, R̂
]]

, (18.100)

where Ĥ0. The evolution of the reduced center-of-mass density operators ρ̂g =
〈g|R̂|g〉 and ρ̂e = 〈e|R̂|e〉 is given by the coupled equations

dρ̂g

dt
= − i

k

[
Ĥg, ρ̂g

]
+ΓN ρ̂e

−η
2

[{
f (q̂/2,t)† f (q̂/2,t), ρ̂g

}−2 f (q̂/2,t)†ρ̂e f (q̂/2,t)
]

, (18.101)

dρ̂e

dt
= − i

k

[
Ĥe, ρ̂e

]−Γ ρ̂e

−η
2

[{
f (q̂/2,t)† f (q̂/2,t), ρ̂e

}−2 f (q̂/2,t)ρ̂g f (q̂/2,t)†] , (18.102)

where

Ĥg =
p̂2

2
+

2κ
|ν|2 f (q̂2,t)† f (q̂/2,t) , (18.103)

Ĥe =
p̂2

2
− 2κ
|ν|2 f (q̂/2,t)† f (q̂/2,t) , (18.104)

and ν = 1− iγ/2Δ and { , } denotes the anti-commutator. We have again used

the dimensionless variables for convenience: k = 4h̄k2

mω , κ = h̄k2Ω2

2mω2Δ , Γ = γ
ω , t = ωτ ,

η = γΩ2

4ωΔ2|ν|2 , q = 2kx, and p = 2kpx
mω .

The master equation may be unravelled as a stochastic Schrödinger equation as
follows. The internal state changes according to the two jump processes N1, and N2

which have the following actions:

g
N1→ e, absorption (18.105)

e
N1→ g, stimulated emission (18.106)

g
N2→ e spontaneous emission . (18.107)

These two jump processes proceed at the rates
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E [dN1] = η〈ψ | f (q̂/2,t)2|ψ〉dt , (18.108)

E [dN2] = Γ dt . (18.109)

Here E[ ] denotes an ensemble average. thus represents spontaneous emission while
N2(t) represents stimulated emission. The centre-of-mass state evolves according to
the un-normalised stochastic Schrödinger equation

d|ψ〉 = − i
k

dtK̂σ |ψ〉+ dN1

(
f (q̂/2,t)√〈 f (q̂/2,t)2〉 −1

)
|ψ〉

+ dN2

(
exp(ip̄q̂/k)√〈ψ |ψ〉 −1

)
|ψ〉 , (18.110)

where 〈 f (q̂/2,t)2〉= 〈ψ | f (q̂/2,t)2|ψ〉. This equation does not preserve the normal-
isation of the state |ψ〉. This will be important when we come to generate the times
for the jump N1. The jump terms determine the state after a jump |ψafter〉 in terms of
the state before |ψbefore〉 by

N1 : |ψafter〉= f (q̂/2,t)|ψbefore〉√〈ψbefore| f (q̂/2,t)2|ψbefore〉
, (18.111)

N2 : |ψafter〉= exp(ip̄q̂/k) |ψbefore〉√〈ψbefore|ψbefore〉
. (18.112)

where p̄ is the random kick in momentum due to spontaneous recoil which satisfies

Prob(p̄, p̄+ d p̄) = φ(p̄)d p̄ (18.113)

The operator K̂σ is non-Hermitian and depends on the internal state σ as follows:

K̂σ =
{

p̂2/2 +V(q̂,t)/ν∗ σ = g
p̂2/2−V(q̂,t)/ν σ = e.

(18.114)

where ν = 1− iγ/2Δ and V (q̂,t) = f †(q̂,t) f (q̂,t). Between jumps the state evolves
in a complex potential and the imaginary part of the complex potential causes the
normalisation of |ψ〉 to decay. The effect of an N1 jump is to change the internal
state and to change the centre-of-mass state. The cumulative distribution function
for the stimulated jump N1 is given by

Pstim(t) = 1−|〈ψ(t)|ψ(t)〉| . (18.115)

We generate a random number zstim which has a uniform distribution on the interval
and provided no spontaneous emission has occurred in the meantime we integrate
the wave equation with generator K̂σ to the time t such that zstim = 1−|〈ψ(t)|ψ(t)〉|.
In this way we compute when an atom makes a stimulated transition.
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When the atom makes a transition to state b it is easy to generate the random
number tspont equal to the time the atom spontaneously emits using the cumulative
distribution function Pspont(t) = 1− exp(−Γ t). The effect of spontaneous emission
N2 is to change the momentum of the state by the amount p̄ given by

p̄ = k(cosζ cosθ + sinφ sinθ sinζ )/2 , (18.116)

where ζ is the angle between the dipole moment and the x-axis. The angle φ ∈
[0,2π ] is random with a uniform distribution and θ is given by

θ = arccos

[
2cos

(
arccos(2y−1)+ 4π

3

)]
, (18.117)

where y ∈ [0,1] is a random number with a uniform distribution. In our numerical
calculations we have chosen ζ = π/2.

To recover the centre-of-mass density operator one takes the ensemble average
of the conditioned operators

ρ̂ = ρ̂g + ρ̂e = E

[ |ψ〉〈ψ |
〈ψ |ψ〉

]
(18.118)

In the simulations of [16] the state |ψ〉 was evolved forward for a time δ t us-
ing the first order split operator method. Then the norm of |ψ(t + δ t)〉 is calculated
to determine if a stimulated jump has occurred and whether the spontaneous emis-
sion time tspont is reached. If a jump occurs the appropriate transformation (18.8) is
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Fig. 18.14 Tunneling between second order resonances as reflected in the momentum mean 〈p〉
and variance V (p). Solid line, coherent motion; dashed line with spontaneous emission included
and Γ = 1.525,η = 6.1×10−4
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applied in the momentum representation and then the new state is evolved forward
δ t and so on until it has been evolved forward the desired time. The whole process
is repeated over 1,000 trajectories.

To test whether spontaneous emission obscures coherent tunneling simulations
were made using the atomic system of Ytterbium with k = 0.25 and with an ini-
tial wavepacket localised in phase space at (q0, p0) = (0.0,1.0) and a momentum
variance of V (p) = 0.04. In Fig. 18.14 we show quantum Monte Carlo simulations
with and without spontaneous emission. We still see definite sign of coherent tun-
neling even when spontaneous emission is included.

For the initial state a semi-classical an estimate, based on the simulation, for the
coherence damping rate gives Γcoh≈ 0.06η . The time taken to tunnel to the opposite
second order resonance is T ≈ 125× 2π . This implies that the value η ≈ 0.02 is
required for the critical damping of the tunneling oscillations. Dynamic localisation
is a coherent effect and noise due to spontaneous emission must be kept low. For
the spontaneous decay rate of Ytterbium of γ/2π =183 kHz, the spontaneous and
stimulated rates are Γ = 1.5 and η = 4.5×10−4 respectively.
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Chapter 19
Bose-Einstein Condensation

Abstract Bose-Einstein condensation (BEC) refers to a prediction of quantum sta-
tistical mechanics (Bose [1], Einstein [2]) where an ideal gas of identical bosons
undergoes a phase transition when the thermal de Broglie wavelength exceeds the
mean spacing between the particles. Under these conditions, bosons are stimulated
by the presence of other bosons in the lowest energy state to occupy that state as
well, resulting in a macroscopic occupation of a single quantum state. The con-
densate that forms constitutes a macroscopic quantum-mechanical object. BEC was
first observed in 1995, seventy years after the initial predictions, and resulted in the
award of 2001 Nobel Prize in Physics to Cornell, Ketterle and Weiman. The exper-
imental observation of BEC was achieved in a dilute gas of alkali atoms in a mag-
netic trap. The first experiments used 87Rb atoms [3], 23Na [4], 7Li [5], and H [6]
more recently metastable He has been condensed [7]. The list of BEC atoms now
includes molecular systems such as Rb2 [8], Li2 [9] and Cs2 [10]. In order to cool
the atoms to the required temperature (∼200 nK) and densities (1013–1014 cm−3)
for the observation of BEC a combination of optical cooling and evaporative cooling
were employed. Early experiments used magnetic traps but now optical dipole traps
are also common. Condensates containing up to 5×109 atoms have been achieved
for atoms with a positive scattering length (repulsive interaction), but small con-
densates have also been achieved with only a few hundred atoms. In recent years
Fermi degenerate gases have been produced [11], but we will not discuss these in
this chapter.

BECs are now routinely produced in dozens of laboratories around the world.
They have provided a wonderful test bed for condensed matter physics with stunning
experimental demonstrations of, among other things, interference between conden-
sates, superfluidity and vortices. More recently they have been used to create opti-
cally nonlinear media to demonstrate electromagnetically induced transparency and
neutral atom arrays in an optical lattice via a Mott insulator transition.

Many experiments on BECs are well described by a semiclassical theory dis-
cussed below. Typically these involve condensates with a large number of atoms,
and in some ways are analogous to describing a laser in terms of a semiclassi-
cal mean field. More recent experiments however have begun to probe quantum
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properties of the condensate, and are related to the fundamental discreteness of the
field and nonlinear quantum dynamics. In this chapter, we discuss some of these
quantum properties of the condensate. We shall make use of “few mode” approxi-
mations which treat only essential condensate modes and ignore all noncondensate
modes. This enables us to use techniques developed for treating quantum optical
systems described in earlier chapters of this book.

19.1 Hamiltonian: Binary Collision Model

The effects of interparticle interactions are of fundamental importance in the study
of dilute–gas Bose–Einstein condensates. Although the actual interaction potential
between atoms is typically very complex, the regime of operation of current exper-
iments is such that interactions can in fact be treated very accurately with a much–
simplified model. In particular, at very low temperature the de Broglie wavelengths
of the atoms are very large compared to the range of the interatomic potential. This,
together with the fact that the density and energy of the atoms are so low that they
rarely approach each other very closely, means that atom–atom interactions are ef-
fectively weak and dominated by (elastic) s–wave scattering. It follows also that
to a good approximation one need only consider binary collisions (i.e., three–body
processes can be neglected) in the theoretical model.

The s–wave scattering is characterised by the s–wave scattering length, a, the
sign of which depends sensitively on the precise details of the interatomic potential
[a > 0 (a < 0) for repulsive (attractive) interactions]. Given the conditions described
above, the interaction potential can be approximated by

U(r− r′) = U0δ (r− r′) , (19.1)

(i.e., a hard sphere potential) with U0 the interaction “strength,” given by

U0 =
4π h̄2a

m
, (19.2)

and the Hamiltonian for the system of weakly interacting bosons in an external
potential, Vtrap(r), can be written in the second quantised form as

Ĥ =
∫

d3r Ψ̂†(r)
[
− h̄2

2m
∇2 +Vtrap(r)

]
Ψ̂(r)

+
1
2

∫
d3r

∫
d3r′Ψ̂ †(r)Ψ̂†(r′)U(r− r′)Ψ̂ (r′)Ψ̂(r) (19.3)

where Ψ̂(r) and Ψ̂†(r) are the boson field operators that annihilate or create a par-
ticle at the position r, respectively.
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To put a quantitative estimate on the applicability of the model, if ρ is the density
of bosons, then a necessary condition is that a3ρ � 1 (for a > 0). This condition is
indeed satisfied in the alkali gas BEC experiments [3, 4], where achieved densities
of the order of 1012−1013 cm−3 correspond to a3ρ � 10−5−10−6.

19.2 Mean–Field Theory — Gross-Pitaevskii Equation

The Heisenberg equation of motion for Ψ̂(r) is derived as

ih̄
∂Ψ̂ (r,t)

∂ t
=
[
− h̄2

2m
∇2 +Vtrap(r)

]
Ψ̂(r,t)+U0Ψ̂†(r,t)Ψ̂(r,t)Ψ̂ (r,t) , (19.4)

which cannot in general be solved. In the mean–field approach, however, the expec-
tation value of (19.4) is taken and the field operator decomposed as

Ψ̂(r,t) = Ψ(r,t)+Ψ̃(r,t) , (19.5)

where Ψ(r,t) = 〈Ψ̂ (r,t)〉 is the “condensate wave function” and Ψ̃(r) describes
quantum and thermal fluctuations around this mean value. The quantity Ψ(r,t) is in
fact a classical field possessing a well–defined phase, reflecting a broken gauge sym-
metry associated with the condensation process. The expectation value of Ψ̃(r,t) is
zero and, in the mean–field theory, its effects are assumed to be small, amounting to
the assumption of the thermodynamic limit, where the number of particles tends to
infinity while the density is held fixed. For the effects of Ψ̃(r) to be negligibly small
in the equation for Ψ(r) also amounts to an assumption of zero temperature (i.e.,
pure condensate). Given that this is so, and using the normalisation

∫
d3r |Ψ (r,t)|2 = 1 , (19.6)

one is lead to the nonlinear Schrödinger equation, or “Gross–Pitaevskii equation”
(GP equation), for the condensate wave function Ψ(r,t) [13],

ih̄
∂Ψ (r,t)

∂ t
=
[
− h̄2

2m
∇2 +Vtrap(r)+ NU0|Ψ(r,t)|2

]
Ψ (r,t) , (19.7)

where N is the mean number of particles in the condensate. The nonlinear interaction
term (or mean–field pseudo–potential) is proportional to the number of atoms in the
condensate and to the s–wave scattering length through the parameter U0.

A stationary solution for the condensate wavefunction may be found by substi-

tuting ψ(r,t) = exp
(−iμt

h̄

)
ψ(r) into (19.7) (where μ is the chemical potential of

the condensate). This yields the time independent equation,
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[−h̄2

2m
∇2 +Vtrap(r)+ NU0 |ψ(r)|2

]
ψ(r) = μψ(r) . (19.8)

The GP equation has proved most successful in describing many of the mean field
properties of the condensate. The reader is referred to the review articles listed in
further reading for a comprehensive list of references. In this chapter we shall focus
on the quantum properties of the condensate and to facilitate our investigations we
shall go to a single mode model.

19.3 Single Mode Approximation

The study of the quantum statistical properties of the condensate (at T = 0) can be
reduced to a relatively simple model by using a mode expansion and subsequent
truncation to just a single mode (the “condensate mode”). In particular, one writes
the Heisenberg atomic field annihilation operator as a mode expansion over single–
particle states,

Ψ̂(r,t) = ∑
α

aα(t)ψα(r)exp−iμα t/h̄

= a0(t)ψ0(r)exp−iμ0t/h̄ +Ψ̃(r,t) , (19.9)

where [aα(t),a†
β (t)] = δαβ and {ψα(r)} are a complete orthonormal basis set and

{μα} the corresponding eigenvalues. The first term in the second line of (19.9) acts
only on the condensate state vector, with ψ0(r) chosen as a solution of the station-
ary GP equation (19.8) (with chemical potential μ0 and mean number of condensate
atoms N). The second term, Ψ̃(r,t), accounts for non–condensate atoms. Substitut-
ing this mode expansion into the Hamiltonian

Ĥ =
∫

d3r Ψ̂ †(r)
[
− h̄2

2m
∇2 +Vtrap(r)

]
Ψ̂(r)

+(U0/2)
∫

d3r Ψ̂†(r)Ψ̂ †(r)Ψ̂(r)Ψ̂ (r) , (19.10)

and retaining only condensate terms, one arrives at the single–mode effective Hamil-
tonian

Ĥ = h̄ω̃0a†
0a0 + h̄κa†

0a†
0a0a0 , (19.11)

where

h̄ω̃0 =
∫

d3r ψ∗0 (r)
[
− h̄2

2m
∇2 +Vtrap(r)

]
ψ0(r) , (19.12)

and

h̄κ =
U0

2

∫
d3r |ψ0(r)|4 . (19.13)
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We have assumed that the state is prepared slowly, with damping and pumping rates
vanishingly small compared to the trap frequencies and collision rates. This means
that the condensate remains in thermodynamic equilibrium throughout its prepara-
tion. Finally, the atom number distribution is assumed to be sufficiently narrow that
the parameters ω̃0 and κ , which of course depend on the atom number, can be re-
garded as constants (evaluated at the mean atom number). In practice, this proves to
be a very good approximation.

19.4 Quantum State of the Condensate

A Bose-Einstein condensate (BEC) is often viewed as a coherent state of the atomic
field with a definite phase. The Hamiltonian for the atomic field is independent of the
condensate phase (see Exercise 19.1) so it is often convenient to invoke a symmetry
breaking Bogoliubov field to select a particular phase. In addition, a coherent state
implies a superposition of number states, whereas in a single trap experiment there
is a fixed number of atoms in the trap (even if we are ignorant of that number) and
the state of a simple trapped condensate must be a number state (or, more precisely,
a mixture of number states as we do not know the number in the trap from one
preparation to the next). These problems may be bypassed by considering a system
of two condensates for which the total number of atoms N is fixed. Then, a general
state of the system is a superposition of number difference states of the form,

|ψ〉=
N

∑
k=0

ck |k,N− k〉 (19.14)

As we have a well defined superposition state, we can legitimately consider the
relative phase of the two condensates which is a Hermitian observable. We describe
in Sect. 19.6 how a particular relative phase is established due to the measurement
process.

The identification of the condensate state as a coherent state must be modified in
the presence of collisions except in the case of very strong damping.

19.5 Quantum Phase Diffusion: Collapses
and Revivals of the Condensate Phase

The macroscopic wavefunction for the condensate for a relatively strong number
of atoms will exhibit collapses and revivals arising from the quantum evolution of
an initial state with a spread in atom number [21]. The initial collapse has been
described as quantum phase diffusion [20]. The origins of the collapses and revivals
may be seen straightforwardly from the single–mode model. From the Hamiltonian
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Ĥ = h̄ω̃0a†
0a0 + h̄κa†

0a†
0a0a0 , (19.15)

the Heisenberg equation of motion for the condensate mode operator follows as

ȧ0(t) = − i
h̄
[a0,H]

= −i
(

ω̃0a0 + 2κa†
0a0a0

)
, (19.16)

for which a solution can be written in the form

a0(t) = exp
[
−i

(
ω̃0 + 2κa†

0a0

)
t
]

a0(0) . (19.17)

Writing the initial state of the condensate, |i〉, as a superposition of number states,

|i〉= ∑
n

cn|n〉 , (19.18)

the expectation value 〈i|a0(t)|i〉 is given by

〈i|a0(t)|i〉 = ∑
n

c∗n−1cn
√

n exp{−i [ω̃0 + 2κ(n−1)]t}

= ∑
n

c∗n−1cn
√

n exp

(
− iμt

h̄

)
exp{−2iκ(n−N)t} , (19.19)

where the relationship
μ = h̄ω̃0 + 2h̄κ(N−1) , (19.20)

has been used [this expression for μ uses the approximation 〈n2〉 = N2 +(Δn)2 ≈
N2]. The factor exp(−iμt/h̄) describes the deterministic motion of the condensate
mode in phase space and can be removed by transforming to a rotating frame of
reference, allowing one to write

〈i|a0(t)|i〉= ∑
n

c∗n−1cn
√

n {cos[2κ(n−N)t]− i sin[2κ(n−N)t]} . (19.21)

This expression consists of a weighted sum of trigonometric functions with different
frequencies. With time, these functions alternately “dephase” and “rephase,” giving
rise to collapses and revivals, respectively, in analogy with the behaviour of the
Jaynes–Cummings Model of the interaction of a two–level atom with a single elec-
tromagnetic field mode described in Sect. 10.2. The period of the revivals follows di-
rectly from (19.21) as T = π/κ . The collapse time can be derived by considering the
spread of frequencies for particle numbers between n = N +(Δn) and n = N−(Δn),
which yields (ΔΩ) = 2κ(Δn); from this one estimates tcoll � 2π/(ΔΩ) = T/(Δn),
as before.

From the expression tcoll � T/(Δn), it follows that the time taken for collapse
depends on the statistics of the condensate; in particular, on the “width” of the initial
distribution. This dependence is illustrated in Fig. 19.1, where the real part of 〈a0(t)〉
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Fig. 19.1 The real part of
the condensate amplitude
versus time, Re{〈a0(t)〉} for
an amplitude–squeezed state,
(a) and a coherent state (b)
with the same mean number
of atoms, N = 25
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is plotted as a function of time for two different initial states: (a) an amplitude–
squeezed state, (b) a coherent state. The mean number of atoms is chosen in each
case to be N = 25.

The timescales of the collapses show clear differences; the more strongly
number–squeezed the state is, the longer its collapse time. The revival times, how-
ever, are independent of the degree of number squeezing and depend only on the
interaction parameter, κ . For example, a condensate of Rb 2,000 atoms with the
ω/2π = 60 Hz, has revival time of approximately 8 s, which lies within the typical
lifetime of the experimental condensate (10–20 s).

One can examine this phenomenon in the context of the interference between a
pair of condensates and indeed one finds that the visibility of the interference pat-
tern also exhibits collapses and revivals, offering an alternative means of detecting
this effect. To see this, consider, as above, that atoms are released from two conden-
sates with momenta k1 and k2 respectively. Collisions within each condensate are
described by the Hamiltonian (neglecting cross–collisions)

Ĥ = h̄κ
[(

a†
1a1

)2
+
(

a†
2a2

)2
]

, (19.22)

from which the intensity at the detector follows as

I(x,t) = I0〈[a†
1(t)expik1x + a†

2(t)expik2x][a1(t)exp−ik1x + a2(t)exp−ik2x]〉

= I0

{
〈a†

1a1〉+ 〈a†
2a2〉

+〈a†
1 exp

[
2i
(

a†
1a1−a†

2a2

)
κt
]

a2〉exp−iφ(x) + h.c.
}

, (19.23)

where φ(x) = (k2− k1)x.
If one assumes that each condensate is initially in a coherent state of amplitude

|α|, with a relative phase φ between the two condensates, i.e., assuming that

|ϕ(t = 0)〉= |α〉|αe−iφ 〉 , (19.24)
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then one obtains for the intensity

I(x,t) = I0
|α|2

2

{
1 + exp

[
2|α|2 (cos(2κt)−1)

]
cos [φ(x)−φ ]

}
. (19.25)

From this expression, it is clear that the visibility of the interference pattern under-
goes collapses and revivals with a period equal to π/κ . For short times t � 1/2κ ,
this can be written as

I(x,t) = I0
|α|2

2

[
1 + exp

(−|α|2κ2t2)] , (19.26)

from which the collapse time can be identified as tcoll = 1/κ |α|.
An experimental demonstration of the collapse and revival of a condensate was

done by the group of Bloch in 2002 [12]. In the experiment coherent states of 87Rb
atoms were prepared in a three dimensional optical lattice where the tunneling is
larger than the on-site repulsion. The condensates in each well were phase coherent
with constant relative phases between the sites, and the number distribution in each
well is close to Poisonnian. As the optical dipole potential is increased the depth of
the potential wells increases and the inter-well tunneling decreases producing a sub-
Poisson number distribution in each well due to the repulsive interaction between the
atoms. After preparing the states in each well, the well depth is rapidly increased to
create isolated potential wells. The nonlinear interaction of (19.15) then determines
the dynamics in each well. After some time interval, the hold time, the condensate
is released from the trap and the resulting interference pattern is imaged. As the
mean field amplitude in each well undergoes a collapse the resulting interference
pattern visibility decreases. However as the mean field revives, the visibility of the
interference pattern also revives. The experimental results are shown in Fig. 19.2.

Fig. 19.2 The interference pattern imaged from the released condensate after different hold times.
In (d) the interference fringes have entirely vanished indicating a complete collapse of the am-
plitude of the condensate. In (g), the wait time is now close to the complete revival time for the
coherent amplitude and the fringe pattern is restored. From Fig. 2 of [12]
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19.6 Interference of Two Bose–Einstein Condensates
and Measurement–Induced Phase

The standard approach to a Bose–Einstein condensate assumes that it exhibits a
well–defined amplitude, which unavoidably introduces the condensate phase. Is this
phase just a formal construct, not relevant to any real measurement, or can one ac-
tually observe something in an experiment? Since one needs a phase reference to
observe a phase, two options are available for investigation of the above question.
One could compare the condensate phase to itself at a different time, thereby ex-
amining the condensate phase dynamics, or one could compare the phases of two
distinct condensates. This second option has been studied by a number of groups,
pioneered by the work of Javanainen and Yoo [23] who consider a pair of statisti-
cally independent, physically–separated condensates allowed to drop and, by virtue
of their horizontal motion, overlap as they reach the surface of an atomic detec-
tor. The essential result of the analysis is that, even though no phase information is
initially present (the initial condensates may, for example, be in number states), an
interference pattern may be formed and a relative phase established as a result of
the measurement. This result may be regarded as a constructive example of sponta-
neous symmetry breaking. Every particular measurement produces a certain relative
phase between the condensates; however, this phase is random, so that the symme-
try of the system, being broken in a single measurement, is restored if an ensemble
of measurements is considered.

The physical configuration we have just described and the predicted interference
between two overlapping condensates was realised in a beautiful experiment per-
formed by Andrews et al. [18] at MIT. The observed fringe pattern is shown in
Fig. 19.8.

19.6.1 Interference of Two Condensates Initially in Number States

To outline this effect, we follow the working of Javanainen and Yoo [23] and
consider two condensates made to overlap at the surface of an atom detector. The
condensates each contain N/2 (noninteracting) atoms of momenta k1 and k2, respec-
tively, and in the detection region the appropriate field operator is

ψ̂(x) =
1√
2

[
a1 + a2expiφ(x)

]
, (19.27)

where φ(x) = (k2− k1)x and a1 and a2 are the atom annihilation operators for the
first and second condensate, respectively. For simplicity, the momenta are set to±π ,
so that φ(x) = 2πx. The initial state vector is represented simply by

|ϕ(0)〉= |N/2,N/2〉 . (19.28)
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Assuming destructive measurement of atomic position, whereby none of the
atoms interacts with the detector twice, a direct analogy can be drawn with the
theory of absorptive photodetection and the joint counting rate Rm for m atomic
detections at positions {x1, · · · ,xm} and times {t1, · · · ,tm} can be defined as the
normally–ordered average

Rm (x1,t1, . . . ,xm,tm)
= Km〈ψ̂†(x1,t1) · · · ψ̂†(xm,tm)ψ̂(xm,tm) · · · ψ̂(x1,t1)〉 . (19.29)

Here, Km is a constant that incorporates the sensitivity of the detectors, and Rm = 0
if m > N, i.e., no more than N detections can occur.

Further assuming that all atoms are in fact detected, the joint probability density
for detecting m atoms at positions {x1, · · · ,xm} follows as

pm (x1, · · · ,xm) =
(N−m)!

N!
〈ψ̂†(x1) · · · ψ̂†(xm)ψ̂(xm) · · · ψ̂(x1)〉 (19.30)

The conditional probability density, which gives the probability of detecting an atom
at the position xm given m− 1 previous detections at positions {x1, · · · ,xm−1}, is
defined as

p(xm|x1, · · · ,xm−1) =
pm(x1, · · · ,xm)

pm−1(x1, · · · ,xm−1)
, (19.31)

and offers a straightforward means of directly simulating a sequence of atom
detections [23, 24]. This follows from the fact that, by virtue of the form for
pm(x1, · · · ,xm), the conditional probabilities can all be expressed in the simple form

p(xm|x1, · · · ,xm−1) = 1 + β cos(2πxm + ϕ) , (19.32)

where β and ϕ are parameters that depend on {x1, · · · ,xm−1}. The origin of this
form can be seen from the action of each measurement on the previous result,

〈ϕm|ψ̂†(x)ψ̂(x)|ϕm〉= (N−m)+ 2Acos[θ −φ(x)] , (19.33)

with Aexp−iθ = 〈ϕm|a†
1a2|ϕm〉.

So, to simulate an experiment, one begins with the distribution p1(x)= 1, i.e., one
chooses the first random number (the position of the first atom detection), x1, from
a uniform distribution in the interval [0,1] (obviously, before any measurements are
made, there is no information about the phase or visibility of the interference). After
this “measurement,” the state of the system is

|ϕ1〉 = ψ̂(x1)|ϕ0〉
=
√

N/2
{
|(N/2)−1,N/2〉+ |N/2,(N/2)−1〉expiφ(x1)

}
. (19.34)

That is, one now has an entangled state containing phase information due to the fact
that one does not know from which condensate the detected atom came. The corre-
sponding conditional probability density for the second detection can be derived as
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Fig. 19.3 (a) Numerical simulation of 5,000 atomic detections for N = 10,000 (circles). The solid
curve is a least-squares fit using the function 1 + β cos(2πx + ϕ). The free parameters are the
visibility β and the phase ϕ . The detection positions are sorted into 50 equally spaced bins. (b)
Collisions included (κ = 2γ giving a visibility of about one-half of the no collision case. From
Wong et al. [24]
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p(x|x1) =
p2(x1,x)
p1(x1)

=
1

N−1
〈ψ̂†(x1)ψ̂†(x)ψ̂(x)ψ̂(x1)〉

〈ψ̂†(x1)ψ̂(x1)〉 (19.35)

=
1
2

{
1 +

N
2(N−1)

cos [φ(x)−φ(x1)]
}

. (19.36)

Hence, after just one measurement the visibility (for large N) is already close to 1/2,
with the phase of the interference pattern dependent on the first measurement x1. The
second position, x2, is chosen from the distribution (19.36). The conditional proba-
bility p(x|x1) has, of course, the form (19.32), with β and ϕ taking simple analytic
forms. However, expressions for β and ϕ become more complicated with increasing
m, and in practice the approach one takes is to simply calculate p(x|x1, · · · ,xm−1)
numerically for two values of x [using the form (19.30) for pm(x1, . . . ,xm−1,x), and
noting that pm−1(x1, . . . ,xm−1) is simply a number already determined by the simu-
lation] and then, using these values, solve for β and ϕ . This then defines exactly the
distribution from which to choose xm.

The results of simulations making use of the above procedure are shown in
Figs 19.3 – 19.4. Figure 19.3 shows a histogram of 5,000 atom detections from
condensates initially containing N/2 = 5,000 atoms each with and without colli-
sions. From a fit of the data to a function of the form 1+β cos(2πx+ϕ), the visibil-
ity of the interference pattern, β , is calculated to be 1. The conditional probability
distributions calculated before each detection contain what one can define as a con-
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Fig. 19.4 Averaged conditional visibility as a function of the number of detected atoms. From
Wong et al. [13]



19.7 Quantum Tunneling of a Two Component Condensate 409

0 0.5 1 1.5 2

0.5

0

0.5

Θ

z ο
1

3,4

2

(a)

elliptic
saddle

0 0.5 1 1.5 2

0.5

0

0.5

Θ

x ο

(b)

1,2

3

4

elliptic
saddle

Fig. 19.5 Fixed point bifurcation diagram of the two mode semiclassical BEC dynamics. (a) z∗,
(b) x∗ . Solid line is stable while dashed line is unstable.

ditional visibility. Following the value of this conditional visibility gives a quantita-
tive measure of the buildup of the interference pattern as a function of the number
of detections. The conditional visibility, averaged over many simulations, is shown
as a function of the number of detections in Fig. 19.4 for N = 200. One clearly
sees the sudden increase to a value of approximately 0.5 after the first detection,
followed by a steady rise towards the value 1.0 (in the absence of collisions) as
each further detection provides more information about the phase of the interference
pattern.

One can also follow the evolution of the conditional phase contained within the
conditional probability distribution. The final phase produced by each individual
simulation is, of course, random but the trajectories are seen to stabilise about a
particular value after approximately 50 detections (for N = 200).

19.7 Quantum Tunneling of a Two Component Condensate

A two component condensate in a double well potential is a non trivial nonlinear
dynamical model. Suppose the trapping potential in (19.3) is given by

V (r) = b(x2−q2
0)

2 +
1
2

mω2
t (y2 + z2) (19.37)

where ωt is the trap frequency in the y–z plane. The potential has elliptic fixed
points at r1 = +q0x, r2 =−q0x near which the linearised motion is harmonic with
frequency ω0 = qo (8b/m)1/2. For simplicity we set ωt = ω0 and scale the length in
units of r0 =

√
h̄/2mω0, which is the position uncertainty in the harmonic oscillator

ground state. The barrier height is B = (h̄ω/8)(q0/r0)2. We can justify a two mode
expansion of the condensate field by assuming the potential parameters are chosen
so that the two lowest single particle energy eigenstates are below the barrier, with
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the next highest energy eigenstate separated from the ground state doublet by a
large gap. We will further assume that the interaction term is sufficiently weak that,
near zero temperature, the condensate wave functions are well approximated by the
single particle wave functions.

The potential may be expanded around the two stable fixed points to quadratic
order

V (r) = Ṽ (2)(r− r j)+ . . . (19.38)

where j = 1,2 and
Ṽ (2)(r) = 4bq2

0|r|2 (19.39)

We can now use as the local mode functions the single particle wave functions for
harmonic oscillators ground states, with energy E0, localised in each well,

u j(r) =
−(−1) j

(2πr2
0)3/4

exp

[
−1

4
((x−q0)2 + y2 + z2)/r2

0

]
(19.40)

These states are almost orthogonal, with the deviation from orthogonality given by
the overlap under the barrier,

∫
d3ru∗j(r)uk(r) = δ j,k +(1− δ j,k)ε (19.41)

with ε = e−
1
2 q2

0/r2
0 .

The localised states in (19.40) may be used to approximate the single particle
energy (and parity) eigenstates as

u± ≈ 1√
2
[u1(r)±u2(r)] (19.42)

corresponding to the energy eigenvalues E± = E0±R with

R =
∫

d3r u∗1(r)[V (r)− Ṽ(r− r1)]u2(r) (19.43)

A localised state is thus an even or odd superposition of the two lowest energy
eigenstates. Under time evolution the relative phase of the superposition can change
sign after a time T = 2π/Ω, the tunneling time, where the tunneling frequency is
given by

Ω =
2R

h̄
=

3
8

ω0
q2

0

r2
0

e−q2
0/2r2

0 (19.44)

We now make the two-mode approximation by expanding the field operator as

ψ̂(r,t) = c1(t) u1(r)+ c2(t) u2(r) (19.45)

where
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c j(t) =
∫

d3r u∗1(r)ψ̂(r,t) (19.46)

and [ci,c
†
k ] = δ j,k. The two mode approximation is good provided ε is small, equiv-

alently if Ω << ω0. Numerical calculations indicate that the two mode approxima-
tion can be acceptable even for such small values as q0/r0 = 3. With eh two mode
expansion the full many body Hamiltonian may be approximated by [25]

Ĥ2 = E0(c
†
1c1 + c†

2c2)+
h̄Ω
2

(c1c†
2 + c2c†

1)+ h̄κ
(
(c†

1c1)2 +(c†
2c2)2

)
(19.47)

where κ = U0/2h̄Veff and V−1
eff =

∫
d3r|u0(r)|4 is the inverse effective mode volume

of each well. Neglected terms are of order ε2.
This approximate Hamiltonian is expected to be valid so long as the atomic in-

teractions are not so large as to cause large deviations between the single particle lo-
calised states and the true stationary state of the condensate in each well. In practice
this means a restriction on atomic number such that N << r0

|a0| . If we use r0 = 5 μm
and a0 = 5nm, an atom number as N = 100 satisfies the condition. Recently a num-
ber of experiments have begun to explore this low atomic number region where
quantum fluctuations in the field are dominant, as we discuss on more detail below.

19.7.1 Semiclassical Dynamics

Before proceeding to the full quantum analysis of the two-mode Hamiltonian we
first consider the mean-field approximation. For this we employ the Hartree approx-
imation for a fixed number of atoms N, and write the atomic state vector as

|ΨN(t)〉= 1√
N!

[∫
d3rφN(r,t)ψ̂†(r,0)

]N

|0〉 , (19.48)

where |0〉 is the vacuum. The self-consistent nonlinear Schrödinger equation or
Gross-Pitaevskii equation for the condensate wave function φN(r,t) follows from
the Schrödinger equation ih̄|Ψ̇N(t)〉= Ĥ(0)|ΨN(t)〉, and is given by

ih̄
∂φN

∂ t
=
[
− h̄2

2m
∇2 +V (r)+ NU0|φN |2

]
φN . (19.49)

For a particular choice of the global potential V (r), (19.49) can be solved numer-
ically for a given initial condition. In particular, this equation allows simulations
of condensate tunnelling to be performed without the limitations imposed by the
two-mode approximation.

In the two-mode approximation we use the local modes described above and
write

φN(r,t) = e−iE0t/h̄[b1(t)u1(r)+ b2(t)u2(r)] . (19.50)
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Then, to first-order in ε we obtain the coupled-mode equations

db j

dt
=− iΩ

2
b3− j−2iκN|b j|2b j , (19.51)

The number of atoms in the jth well is given by

Nj(t) = 〈ΨN(t)|ĉ†
j ĉ j|ΨN(t)〉= N|b j(t)|2 , (19.52)

and this provides the link between the coupled-mode amplitudes and the expectation
values of the quantum problem.

The coupled-mode (19.51) have an exact solution [15]. For the case that all N
atoms are initially localised in well 1, N1(0) = N|b1(0)|2 = N, the number of atoms
in well 1 varies in time as

N1(t) =
N
2

[
1 + cn(Ωt|N2/N2

c )
]

, (19.53)

with N1(t)+ N2(t) = N. Here cn(φ |m) is a Jacobi elliptic function, and Nc is the
critical number of atoms given by

Nc =
Ω
κ

. (19.54)

For N < Nc this solution exhibits complete and periodic oscillations between the two
condensates with a period K(N2/N2

c ) which depends on the number of atoms, where
K(m) is a complete elliptic integral of the first kind. For N << Nc, cn becomes cos,
and the oscillations are precisely like those in the Josephson effect. As the number
of atoms is increased the oscillation period increases, until at N = Nc the period is
infinite. This marks a bifurcation in the nonlinear system and at this point the system
asymptotically evolves to equal number of atoms N/2 in each well. For N > Nc the
period of oscillation reduces again but the exchange between the wells is no longer
complete. That is, the coherent tunnelling oscillations are inhibited at high numbers
of atoms, and this is the analogue of the self-trapping transition [15] for the double-
well BEC. Note that this result arises even for a fixed number of atoms N, and does
not therefore rely on coherence between different number states. It does, however,
require there to be a well defined relative phase between the amplitudes b1,2 of the
two potential wells.

We can equally well write the solution in terms of three real variables x,y,z de-
fined by

x =
1
2
(|b2|2−|b1|2) (19.55)

y = − i
2
(b∗1b2−b∗2b1) (19.56)

z =
1
2
(b∗1b2 + b1b∗2) (19.57)
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with x2 + y2 + z2 = 1/4, so that the dynamics is constrained to the surface of a
sphere. We can gain some further insight into the nature of the nonlinear dynamics
by considering the fixed points of this dynamical system, that is, those points for
which the velocity vanishes (ẋ = ẏ = ż = 0). There are four fixed points, (x∗,y∗,z∗)
given by

(x∗,y∗,z∗) =

⎧⎪⎪⎨
⎪⎪⎩

(0,0, 1
2 ) (1)

(0,0,− 1
2) (2)

1
4(
√

4Θ 2−1,0,1)Θ (3)
1
4(−√4Θ 2−1,0,1)Θ (4)

(19.58)

where Θ = κN/Ω. If we linearise the motion around each fixed point we see that
the resultant eigenvalues for each of the four fixed points above are

λ1 = ±√2Θ −1

λ2 = ±i
√

2Θ + 1

λ3,4 = ±i
√

4Θ 2−1

The bifurcation at Θ = 1/2 is thus a pitchfork bifurcation. For Θ < 1/2 there are
two elliptic fixed points at the top and bottom of the sphere. Above the bifurcation,
Θ > 1/2, the elliptic fixed point at the top of there sphere becomes a saddle point,
giving rise to two elliptic fixed points that move from the north pole towards the
equator at x =±1/2. The bifurcation diagram is shown in Fig.19.5.

An experimental demonstration of the transition between tunneling and self trap-
ping was published by the Oberthaler group in 2006 [16]. The double well system
was created using an optical dipole standing wave potential superimposed on a mag-
netic harmonic trap. The potential formed in one dimension has the form

Vdw =
1
2

mω2
x (x−Δx)2 +V0 cos2

(
πx
dl

)
(19.59)

where Δx is a relative offset that controls the asymmetry of the potential: when
Δx = 0, a symmetric double well is obtained. The parameters of the system were
carefully determined by independent measurement to be ωx = 2π × 78 Hz, V0 =
h× 412 Hz and dl = 5.18μm There is harmonic confinement in the other two di-
mensions. The atoms used were 87Rb. The atomic number varies from one prepara-
tion to another but is of the order of N = 1000. At the start of a run the parameter
Δx is set to initialise a particular population difference z = (Nl −Nr)/(Nl + Nr) be-
tween a left and right well. In the experiment the self trapping region of phase space
requires a critical population difference zc = 0.39, that is to say Josephson-like tun-
neling between the wells is apparent when the initial condition is set at z < zc, while
self trapping results for z > zc. After the preparation of the BEC in the asymmetric
double well, the offset is changed rapidly (faster than the typical tuneling time of
50 ms) to zero to produce a symmetric double well.

The experimental results were described by an extended two-mode model devel-
oped by Ananikian and Bergeman [17]. A comparison of the extended two-mode



414 19 Bose-Einstein Condensation

Fig. 19.6 A comparison
of theoretically determined
phase-portrait of the extended
two mode model and the
experimental conditions for
self trapping and tunneling
oscillations for a BEC in a
double well potential. The
Josephson oscillation region
is shaded. From Gati et al.
Applied Physics B 82, 207
(2006), Fig. 5
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model and the experimental results is shown in Fig. 19.6 in terms of the theoreti-
cally determined phase space portrait and the experimentally determined parameters
for motion inside the separatrix(tunneling) and motion outside the separatrix (self-
trapping).

19.7.2 Quantum Dynamics

The two mode Hamiltonian given in (19.47) can be written in terms of the generators
of su(2) as

H2 = h̄ΩĴz + 2h̄κ Ĵ2
x (19.60)

with

Ĵx =
1
2
(c†

2c2− c†
1c1) (19.61)

Ĵy =
i
2
(c†

2c1− c†
1c2) (19.62)

Ĵz =
1
2
(c†

2c1 + c†
1c2) (19.63)

The corresponding Casimir invariant is related to number conservation:

Ĵ2 =
N̂
2

(
N̂
2

+ 1

)
(19.64)
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We will generally work in a Hilbert space subspace in which all states are number
eigenstates, and thus we can use the N/2(N/2 + 1) dimensional representation of
su(2). For this reason we have dropped terms that commute with N̂ from the Hamil-
tonian. In this form the Hamiltonian describes a nonlinear top, with a linear precess-
sion around the z-axis and a nonlinear precession around the x axis. These operators
are of course the operator equivalents to the semiclassical variables defined in the
previous section.

From the Heisenberg equations of motion we see that the semiclassical equations
of motion are found by taking scaled moments of the operator equations and fac-
torising all quadratic product averages, for example 〈ĴzĴx〉/N2 = 〈Ĵz〉〈Ĵx〉/N2 = xz.
In Exercise 19.2 we show that this approximation becomes good for condensates
with N >> 1.

The su(2) operators have an obvious interpretations. The operator Ĵx corresponds
to particle number difference between localised states. In Exercise 19.2 you are
asked to show that in fact it is simply the occupation number representation of
the condensate position operator in the two-mode approximation. Likewise we can
show that Ĵy represents the condensate momentum while Ĵz represents the particle
number difference between the two lowest energy eigenstates of the potential.

We can contrast the quantum and classical dynamics of the two mode condensate
by solving the Schrödinger equation in the representation that diagonalises Ĵz. This
is shown in Fig. 19.7. The semiclassical oscillations are modified by a periodic
collapse and revival envelope. For small condensates considered here, the collapse
occurs after only a few tunneling oscillations. However in the semiclassical limit of
large atomic number, and the collapse and revival times are much larger.

(a)

(b)

0.0
–0.5

–0.3

–0.1

0.1

0.3

0.5

100.0 200.0 400.0

0.0 100.0
–0.50

–0.48

–0.46

–0.44

–0.42

time

300.0
time

<
J x>^ <
J x>^

Fig. 19.7 Collapses and revivals in the tunneling oscillations of condensates containing 100
(solid line) and 400 atoms (dashed line). In (a) the number of atoms is such that we are below
the critical number N = 0.9Nc, while in (b) we are above, N = 2.0Nc. The time axis has been
scaled by t0 = 1/Ω. From Milburn et al. Phys. Rev. A 55, 4318–4324 (1997) [25]
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19.8 Coherence Properties of Bose–Einstein Condensates

The coherence properties of a Bose condensate may be determined in a similar fash-
ion to those for laser light. In a laser first order optical coherence is established via
interference experiments and second and higher order optical coherence via inten-
sity correlation measurements.

19.8.1 1st Order Coherence

First order coherence in a Bose-Einstein condensate was established in an exper-
iment demonstrating interference between two condensates [18]. The interference
was obtained between two condensates created in a double well trap which were
released from the trap and allowed to expand and overlap. The interference fringes
observed by absorption imaging are shown in Fig. 19.8. The fringe spacing may be
established by considering two point-like condensates with separation d. The rela-
tive speed between the two condensates at any point in space is d/t where t is the
delay between switching of the trap and observation. The fringe spacing is the de
Broglie wavelength λ associated with the relative motion of atoms with mass m,

λ =
h̄t
md

. (19.65)

Absorption

0.0 0.5 1.0

Fig. 19.8 The interference pattern of two expanding condensates released from a trap (Fig. 2
from [18]
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Their observation confirmed that the fringe spacing became smaller for larger values
of d.

The observed contrast of the atomic interference was between 50 and 100% .
Since the condensates are much larger than the observed fringe spacing they must
have a high degree of spatial coherence. These measurements established the long
range order of the condensate. The theoretical calculations of Sect. 19.6 predicted
that two independent condensates will exhibit interference fringes with a phase that
varies from run to run. This was not possible to verify in the experiment since me-
chanical instabilities were sufficient to generate a random phase.

Spatial interference fringes have also been observed between condensate atoms
outcoupled from a trap demonstrating that the coherence is preserved by the output
coupler. This may be considered as the first prototype of an “atom laser”.

19.8.2 Higher Order Coherence

Evidence for higher–order coherence, strengthening the analogy between conden-
sates and optical laser photons, has also been provided through careful interpretation
of some fundamental condensate properties, in particular, of the loss rate of atoms
from the condensate via three–body recombination and of the mean field energy of
the condensate.

The atom loss rate due to three–body recombination is directly related to the
probability of finding three atoms close to each other [26], and can therefore act as
a probe of the third–order correlation function

g(3)(r,r,r) =
〈Ψ̂†(r)Ψ̂ †(r)Ψ̂†(r)Ψ̂ (r)Ψ̂(r)Ψ̂ (r)〉

n(r)3 , (19.66)

where n(r) = 〈Ψ̂ †(r)Ψ̂ (r)〉 is the atomic density. Importantly, the value of this func-
tion differs between condensates and thermal clouds by a factor of 3! = 6; in partic-
ular, the value of g(3)(r,r,r) for a thermal cloud is a factor of six larger than that for
a condensate, implying an atom loss rate due to three–body recombination six times
larger. The ratio of the noncondensate to the condensate rate constants for this loss
process was found by Burt et al. [27] to be 7.4±2.0, confirming the presence of at
least third–order coherence in their condensates.

Similarly, Ketterle and Miesner [28] have pointed out that the mean–field energy
of a condensate, 〈U〉, provides a direct measure of the second–order correlation
function,

g(2)(r,r) =
〈Ψ̂ †(r)Ψ̂†(r)Ψ̂ (r)Ψ̂(r)〉

n(r)2 , (19.67)

through the relationship (see 19.5)

〈U〉=
(

2π h̄2a
m

)
g(2)(0)

∫
d3r [n(r)]2 , (19.68)



418 19 Bose-Einstein Condensation

where g(2)(0) ≡ g(2)(r,r), assuming that g(2)(r,r′) depends only on r− r′. Re–
analysing condensate data from earlier experiments, they obtain values of g(2)(0)
close to 1, as expected for a condensate and differing from that of a thermal cloud,
for which g(2)(0) = 2. The reduced value of g(2)(0) for a condensate reflects reduced
density fluctuations, in direct analogy with the reduced intensity fluctuations of a
(photon) laser in comparison with a thermal light source.

We note that g(2)(0) = 1,g(3)(0) = 1, while consistent with a coherent state does
not distinguish from a number state for g(2)(0) = 1− 1/n,g(3)(0) = 1− 3/n for
n∼ 106.

A direct experimental determination of the atom counting statistics may be made
by out coupling atoms from the condensate and letting them fall under the action
of gravity: that is an atom laser. The atoms fall through an optical cavity and mod-
ulate the transmission of a coherent laser beam through the cavity by changing the
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Fig. 19.9 The atom number counting statistics for an out-coupled BEC. In (a) the second order
correlation functions is shown. (b) the full counting statistics for the atomic number counted in a
time T − 1.5 ms. The symbol + indicates the probability for a Poisson distribution with the same
mean number n̄ = 1.99 is shown (Fig. 3 from [22])
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absorption and refractive index of the cavity. In the experiment of Öttl et al. [22],
using an out-coupled 87Rb BEC, single atoms transiting the driven cavity resulted
in a drop in transmission. In this way a Hanbury-Brown Twiss experiment can be
done to determine not only g(2) for the atoms but the full counting statistics. The
results are shown in Fig. 19.9. We can clearly see the expected value of 1 indicating
a coherent beam.

Exercises

19.1. Show that the condensate Hamiltonian is invariant under the gauge transfor-
mation ψ̂(r)→ ψ̂(r)eiφ(r).

19.2. The spin coherent states are defined by (see Exercise 15.3)

|α〉= (1 + |α|2)− j
j

∑
m=− j

(
N
m

)1/2

α(m+ j)| j,m〉 (19.69)

where | j,m〉 is the simultaneous eigenstate of Ĵ2 and Ĵz and α is a complex
number. These states have the same form as the general total number eigen-
state for a two-mode condensate given in (19.14) and with the operator cor-
respondence given in Sect. 19.7.2. Compute the moments 〈Ĵk〉 k = x,y,z
in terms of α , and show that α lies in the complex plane of the stereo-
graphic projection of the Bloch sphere. Also compute the second order mo-
ment 〈ĴzĴx〉/N2 and show that for N >> 1 it may be factorised.

19.3. Show that the occupation number representation of the position operator x̂ in
the two-mode approximation is given by

x̂ =
2q0

N
Ĵx (19.70)
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sub-Poissonian statistics, 42

Atomic decay rate, transverse, 217
Atomic operators, collective, 222
Atomic optics, 5

Back action evasion, 270
Bargmann state, 100
Beam splitter, 273
Bell inequality, 4, 249

CHSH form, 251
parametric down conversion, 254

Bistability, dispersive (linear), 143
squeezing spectrum, 147

Bistability, dispersive (nonlinear), 190
Fokker–Planck equation, 190

Bistability, optical, 224
atomic model, 232
noise correlation, 224

Brownian motion, 112
Bunching, photon, 2

second-order correlation function, 39, 40
sub-Poissonian statistics, 42

Cauchy–Schwarz inequality, 32, 79
Cavity, boundary condition, 121
Cavity, laser, 229
Cavity, two-sided, 127
Chaotic field, see Thermal field
Characteristic function, 62

optical bistability, 224
P representation, 62
Q representation, 65

quantum coherence, 283
Wigner representation, 63, 107

CHSH inequality, 251
Clauser–Horne inequality, 255, 259
Coherence, first order optical, 34

Young’s interference experiment, 32
Coherence function, 284
Coherence, optical, 29
Coherence, quantum, 283

visibility, 283
Coherent field, 37
Coherent state, 12, 109

completeness, 14
displacement operator, 12
number state expansion, 12
Poissonian statistics, 13, 58
second-order correlation function, 40, 58

Coherent state two photon, 18
Coincidence probability, 261
Collisional broadening limit, 204
Complementarity, 247
Contractive state, 268
Correlated state, 247
Correlated state, polarization, 248
Correlation function, 29

general inequalities, 29
phase information, 44

Correlation function, first order, 30
Correlation function, higher order, 30
Correlation function, phase dependent, 44
Correlation function, photon number, 202
Correlation function, QND, 267
Correlation function, second-order, 39

antibunching, 41
bunching, 40
coherent state, 41
number state, 41
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resonance fluorescence, 205
thermal field, 49

Correlation function, two-time, 53
Brownian motion, 112
input–output formalism, 127
master equation, 93
Ornstein–Uhlenbeck process, 116
parametric oscillator, 136
phase diffusion, 237
photon counting, 49
regularly pumped laser, 238
resonance fluorescence, 205
two-level atom, 208

Correlation, intensity, 39
Hanbury–Brown Twiss experiment, 1,

30, 38
parametric amplifier, 73

Covariance matrix, 61
Covariance matrix, stationary, 116

Density operator, reduced, 93
Detailed balance, 100

harmonic oscillator, 100
laser, 232

Duality, wave-particle, 327

Efficiency, quantum, 52
Einstein–Podolsky–Rosen paradox, see

Entangled state, EPR paradox
Electric dipole approximation, 203, 225
Electromagnetic field, 7

commutation relations, 10
Hamiltonian, 10
quantisation, 7
vacuum state, 10

Entangled state, 261, 310
EPR paradox, 80, 247
parametric amplifier, 74

Error ellipse, 18
coherent state, 18
Wigner function, 63

Fock state, see Number state
Fokker–Planck equation, 93

degenerate parametric oscillator, 177
dispersive bistability, 177, 190
Green’s function, 103
potential condition, 101
stochastic differential equation, 111

Four wave mixing, 3, 279
degenerate operation, 277
noise correlation, 224
phase matching, 254
QND, 276

side–band modes, 351
squeezing spectrum, 157

Gain, QND, 271, 276–277
Gravitational radiation, 267–268

Hanbury–Brown Twiss experiment, 2, 30, 38
Harmonic oscillator, damped, 102
Harmonic oscillator, master equation, 93

Fokker–Planck equation, 102, 104
transition probabilities, 109–110

Harmonic oscillator, 7
electromagnetic field, 7

Heat bath, see Reservoir
Hidden variable theory, 250
Homodyne detection, 44–46

four wave mixing, 279–280
parametric oscillator, 136–138

Input–output formulation, 127
boundary condition, 131
laser fluctuations, 138
parametric oscillator, 136–138
photon counting distribution, 47
squeezing spectrum, 140
two-time correlation function, 139

Intensity fluctuations, laser, 234–237
Interaction picture, 205
Interferometer, gravity wave, 159

semiclassical behaviour, 162
signal variance, 165
total noise, 167

Interferometer, Mach–Zehnder, 309
Interferometer, polarization, 173
Interferometry, matter, 1, 172, 316
Interferometry, optical, 1

squeezed light, 3

Jaynes–Cummings model, 202

Kapitza–Dirac regime, 379
Kerr effect, 88, 190
KTP crystal, 277

Langevin equation, 112
Brownian motion, 112
constant diffusion process, 116
damped harmonic oscillator, 113
four wave mixing, 279
input–output formalism, 127

Laser, 2, 231
diode, 231
gain, 234
phase diffusion, 237
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Scully–Lamb form, 233
sub–Poissonian statistics, 3
threshold, 234

Laser cooling, 5, 365
Laser, fluctuations, 236

intensity, 234–236
photon number, 234–235, 240–241
pump, 238–241
sub-shot noise, 238

Laser, quantum theory, 231
Laser, regularly pumped, 239
Laser, semiconductor, 238, 242
Lens, atomic, 342
Linewidth, laser, 237–238
Liouvillian operator, 118

Markov approximation, first, 96, 117
Master equation, 93

gravitational wave interferometer, 158, 171
optical bistability, 178, 224
parametric oscillator, 136
resonance fluorescence, 205
Scully–Lamb laser, 233
two-level atom, 205
two-time correlation function, 122

Maxwell’s equations, 8
Measurement limit, strong, 301
Measurement theory, quantum, 283
Micro-cavity, 213
Microscope, Feynman light, 307
Minimum uncertainty state, 15

parametric oscillator, 149
squeezed state, 15

Mixture, classical, 290

Noise spectrum, 117
Normal ordering, 39, 50

P representation, 118
Number state, 10, 57

Observable, QND, 268
Optical Bloch equations, 368–371
Optical tap, 279, 301
Ornstein–Uhlenbeck process, 112

Brownian motion, 112
constant diffusion process, 116
damped harmonic oscillator, 113

Oscillation threshold, 187

Parametric amplifier, degenerate, 73
Parametric amplifier, nondegenerate, 77

selected state, 85
thermal reduced state, 85
two-mode squeezing, 80

Parametric amplifier, QND, 277
Parametric down conversion, 3, 73

Bell inequality, 254
Parametric oscillator, 136, 180, 185

squeezed state, 185
Parametric oscillator (linear), 3, 131, 136

critical fluctuations, 137
Fokker–Planck equation, 136, 138
linearisation, 131, 136, 139
minimum uncertainty state, 75
output correlation matrix, 139
squeezing spectrum, 80, 136
threshold, 136, 138

Parametric oscillator (nonlinear), 177
quadrature variance, 183
semiclassical solution, 215
threshold distribution, 184

Pauli spin operators, 199
Phase decay, collisionally induced, 204
Phase diffusion, laser, 237

linewidth, 233
two-time correlation function, 237

Phase instability, 152
Phase matching, 254
Phase operator, Pegg–Barnett, 25
Phase operator, Susskind–Glogower, 23
Photo-detection, 29, 38, 337
Photon counting, 301
Photon counting, classical, 46

depletion effects, 50
ergodic hypothesis, 48
generating function, 47

Photon counting, conditional, 85
parametric amplifier, 86

Photon counting distribution, 49
Photon counting, nonclassical, 69

number state, 70
squeezed state, 70

Photon counting, quantum mechanical, 49
Photon number, QND, 279
Planck distribution, 58
Pointer basis, 296
Poissonian pumping, 231
Polarization rotator, 254
P representation, 58, 61

Bell inequality, 252
chaotic state, 59
coherent state, 59
harmonic oscillator, 99
normal ordering, 135
quadrature variance, 44

P representation, complex, 68
coherent state, 69
dispersive bistability, 190, 195
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harmonic oscillator, 107
number state, 65

P representation, generalized, 71, 109
bistability, 143
harmonic oscillator, 107
parametric oscillator, 136, 181

P representation, positive, 71, 115
Fokker–Planck equation, 72
harmonic oscillator, 107
optical bistability, 194
parametric oscillator, 177
twin beams, 151

Projection postulate, von Neumann, 85
Pump depletion, 181

Q function, 65
coherent state, 66
harmonic oscillator, 106
number state, 66
squeezed state, 66–67

QND measurement, 4, 268–270
pointer basis, 296
sub-Poissonian statistics, 238
two photon transition, 279

QND measurement, ideal, 268
Q parameter, 239
Quadrature phase measurement, 44
Quadrature phase operator, 81
Quantisation, electromagnetic field, 7
Quantisation, electron field, 213
Quantum nondemolition measurement, see

QND measurement
Quantum recurrance phenomena, 90

Kerr effect, 88
Quantum regression theorem, 118

resonance fluorescence, 205

Rabi frequency, 390
Radiation pressure, 160
Raman–Nath regime, 377
Recoil energy, 365–366, 372
Refractive index, nonlinear, 88
Relative states, 298, 301
Reservoir, 93

collisional process, 398
spectrum, 97–98
spontaneous emission, 203
two-level atom, 98

Reservoir, squeezed, 96, 144
correlation function, 96
two-level atom, 98

Reservoir, thermal, 96
Resonance fluorescence, 2, 205

elastic scattering, 207

in elastic scattering, 207
quantum features, 207–208
spectrum, 206

Rotating wave approximation, 128, 190, 199,
200, 203, 227, 366

R representation, 67
Rydberg atom, 217, 291, 382

Schrödinger cat, 283
Second harmonic generation, 146

critical behaviour, 146–147, 152
Second harmonic generation, 156–157

twin beams, 155
Self pulsing, 147
Shot-noise limit, 173

laser, 237, 241
Signal-to-noise ratio, 172–173, 302
Spectroscopy, photon correlation, 40
Spontaneous emission, 203–204

master equation, 205–206
Wigner theory, 207

Squeezed state, 15–18, 42–43
photon number distribution, 21

Squeezed state, multimode, 22–23
Squeezed state, two-mode, 23

parametric amplifier, 74
Squeezing, 3, 81–82

four-wave mixing, 279
input-output formalism, 127
nonlinear susceptibility, 136
parametric oscillator, 148

Squeezing, generator, 74
parametric amplifier, 74, 77

Squeezing spectrum, 147–148
dispersive bistability, 143
parametric oscillator, 148–149
resonance fluorescence, 205–209

Stability analysis, 145–146
Standard quantum limit, 168–171, 267

gravity wave, 267–268
State preparation, 270, 271, 276, 333, 335, 384
Statistics, photon, 43

laser, 238
micromaser cavity, 382
regularly pumped laser, 238–241

Statistics, photon counting, 46–47
Statistics, Poissonian, 2, 42

coherent state, 13, 58
Kerr effect, 88
laser, 238

Statistics, sub-Poissonian, 2
antibunching, 42
bunching, 41
laser, 2, 49, 238
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QND, 268
resonance fluorescence, 205

Statistics, super-Poissonian, 42
Steady-state solution, 145
Stern–Gerlach effect, optical, 381–387
Stochastic differential equation, 112–115

Fokker–Planck equation, 112–113
gravity wave interferometer, 171
Ito equation, 112
Langevin equation, 112
optical bistability, 190
parametric oscillator, 181

Super-Poissonian statistics, 42–44
Superposition, coherent, 401
Superposition, macroscopic, 4, 401
Superposition principle, 283, 325
Superposition state, 177, 185, 283, 288, 305,

325, 326, 401
Susceptibility, nonlinear, 190
Switching time, 188, 191

Thermal field, 49
laser, 49
second-order correlation function, 52

Transition probability, 29
Tunnelling time, 177, 186–190
Twin beams, 3, 4, 155

critical behaviour, 156
pulsed, 155
semiclassical steady-state, 208
squeezing spectrum, 156, 157

Two-level atom, 201
master equation, 203–204

Uncertainity principle, 7, 12, 16, 83, 267, 270,
301, 303, 312

gravity waves, 267

Vector potential, 7, 8, 9, 197
Visibility, 32, 34, 289–291

Bell inequality, 251, 256
one-photon interference, 259–260
quantum coherence, 283

Wavelength, de Broglie, 397
Wigner function, 62–65

coherent state, 64
covariance matrix, 65
harmonic oscillator, 107–109
number state, 65
parametric amplifier, 83–84
squeezed state, 64

Wigner theory, 192
resonance fluorescence, 205, 341

Young’s interference experiment, 1, 32
coherent superposition, 281, 297
correlation function, 32–34, 38
experiments, 32, 35, 37, 38
quantum explanation of, 1, 37
visibility, 32, 34
with atoms, 261
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